Search results
Results from the WOW.Com Content Network
In electronics, a frequency multiplier is an electronic circuit that generates an output signal and that output frequency is a harmonic (multiple) of its input frequency. Frequency multipliers consist of a nonlinear circuit that distorts the input signal and consequently generates harmonics of the input signal.
The activation frequency is the rate at which multiplies are performed by the algorithm denoted by and the PFA constant, , is extracted empirically from past multiplier designs and shown to be about 15 fW/bit2-Hz for a 1.2 μm technology at 5V. The resulting power model for the multiplier on the basis of the above assumptions is:
A phase-locked loop or phase lock loop (PLL) is a control system that generates an output signal whose phase is fixed relative to the phase of an input signal. Keeping the input and output phase in lockstep also implies keeping the input and output frequencies the same, thus a phase-locked loop can also track an input frequency.
Verilog-2001 is a significant upgrade from Verilog-95. First, it adds explicit support for (2's complement) signed nets and variables. Previously, code authors had to perform signed operations using awkward bit-level manipulations (for example, the carry-out bit of a simple 8-bit addition required an explicit description of the Boolean algebra ...
The classic frequency mixer is a multiplier. Multiplying two sinewaves produces just the sum and difference frequencies; the input frequencies are suppressed, and, in theory, there are no other heterodyne products. In practice, the multiplier is not perfect, and the input frequencies and other heterodyne products will be present.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
A frequency divider, also called a clock divider or scaler or prescaler, is a circuit that takes an input signal of a frequency, , and generates an output signal of a frequency: f o u t = f i n N {\displaystyle f_{out}={\frac {f_{in}}{N}}}
AOL