enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bayesian network - Wikipedia

    en.wikipedia.org/wiki/Bayesian_network

    A Bayesian network (also known as a Bayes network, Bayes net, belief network, or decision network) is a probabilistic graphical model that represents a set of variables and their conditional dependencies via a directed acyclic graph (DAG). [1] While it is one of several forms of causal notation, causal networks are special cases of Bayesian ...

  3. Bayesian inference - Wikipedia

    en.wikipedia.org/wiki/Bayesian_inference

    Bayesian inference (/ ˈ b eɪ z i ə n / BAY-zee-ən or / ˈ b eɪ ʒ ən / BAY-zhən) [1] is a method of statistical inference in which Bayes' theorem is used to calculate a probability of a hypothesis, given prior evidence, and update it as more information becomes available.

  4. Bayes' theorem - Wikipedia

    en.wikipedia.org/wiki/Bayes'_theorem

    [note 1] [8] The Bayesian interpretation of probability was developed mainly by Laplace. [9] About 200 years later, Sir Harold Jeffreys put Bayes's algorithm and Laplace's formulation on an axiomatic basis, writing in a 1973 book that Bayes' theorem "is to the theory of probability what the Pythagorean theorem is to geometry". [10]

  5. Bayesian learning mechanisms - Wikipedia

    en.wikipedia.org/wiki/Bayesian_learning_mechanisms

    Bayesian learning mechanisms are probabilistic causal models [1] used in computer science to research the fundamental underpinnings of machine learning, and in cognitive neuroscience, to model conceptual development. [2] [3]

  6. Bayesian statistics - Wikipedia

    en.wikipedia.org/wiki/Bayesian_statistics

    Bayesian statistics (/ ˈ b eɪ z i ə n / BAY-zee-ən or / ˈ b eɪ ʒ ən / BAY-zhən) [1] is a theory in the field of statistics based on the Bayesian interpretation of probability, where probability expresses a degree of belief in an event. The degree of belief may be based on prior knowledge about the event, such as the results of previous ...

  7. Minimum description length - Wikipedia

    en.wikipedia.org/wiki/Minimum_description_length

    Over the past 40 years this has developed into a rich theory of statistical and machine learning procedures with connections to Bayesian model selection and averaging, penalization methods such as Lasso and Ridge, and so on - Grünwald and Roos (2020) [6] give an introduction including all modern developments.

  8. Bayes estimator - Wikipedia

    en.wikipedia.org/wiki/Bayes_estimator

    In estimation theory and decision theory, a Bayes estimator or a Bayes action is an estimator or decision rule that minimizes the posterior expected value of a loss function (i.e., the posterior expected loss). Equivalently, it maximizes the posterior expectation of a utility function.

  9. Bayesian approaches to brain function - Wikipedia

    en.wikipedia.org/wiki/Bayesian_approaches_to...

    This field of study has its historical roots in numerous disciplines including machine learning, experimental psychology and Bayesian statistics.As early as the 1860s, with the work of Hermann Helmholtz in experimental psychology, the brain's ability to extract perceptual information from sensory data was modeled in terms of probabilistic estimation.