enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bit manipulation - Wikipedia

    en.wikipedia.org/wiki/Bit_manipulation

    Bit twiddling, bit fiddling, bit bashing, and bit gymnastics are often used interchangeably with bit manipulation, but sometimes exclusively refer to clever or non-obvious ways or uses of bit manipulation, or tedious or challenging low-level device control data manipulation tasks. The term bit twiddling dates from early computing hardware ...

  3. Bitwise operation - Wikipedia

    en.wikipedia.org/wiki/Bitwise_operation

    For example, given a bit pattern 0011 (decimal 3), to determine whether the second bit is set we use a bitwise AND with a bit pattern containing 1 only in the second bit: 0011 (decimal 3) AND 0010 (decimal 2) = 0010 (decimal 2) Because the result 0010 is non-zero, we know the second bit in the original pattern was set. This is often called bit ...

  4. Arithmetic shift - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_shift

    The formal definition of an arithmetic shift, from Federal Standard 1037C is that it is: . A shift, applied to the representation of a number in a fixed radix numeration system and in a fixed-point representation system, and in which only the characters representing the fixed-point part of the number are moved.

  5. x86 Bit manipulation instruction set - Wikipedia

    en.wikipedia.org/wiki/X86_Bit_manipulation...

    Another two sets were published by AMD: ABM (Advanced Bit Manipulation, which is also a subset of SSE4a implemented by Intel as part of SSE4.2 and BMI1), and TBM (Trailing Bit Manipulation, an extension introduced with Piledriver-based processors as an extension to BMI1, but dropped again in Zen-based processors). [1]

  6. Mask (computing) - Wikipedia

    en.wikipedia.org/wiki/Mask_(computing)

    In computer science, a mask or bitmask is data that is used for bitwise operations, particularly in a bit field.Using a mask, multiple bits in a byte, nibble, word, etc. can be set either on or off, or inverted from on to off (or vice versa) in a single bitwise operation.

  7. Gray code - Wikipedia

    en.wikipedia.org/wiki/Gray_code

    The most significant digit is an exception to this: for an n-bit Gray code, the most significant digit follows the pattern 2 n-1 on, 2 n-1 off, which is the same (cyclic) sequence of values as for the second-most significant digit, but shifted forwards 2 n-2 places. The four-bit version of this is shown below:

  8. Bit-reversal permutation - Wikipedia

    en.wikipedia.org/wiki/Bit-reversal_permutation

    There are two extensions of the bit-reversal permutation to sequences of arbitrary length. These extensions coincide with bit-reversal for sequences whose length is a power of 2, and their purpose is to separate adjacent items in a sequence for the efficient operation of the Kaczmarz algorithm.

  9. Bitwise trie with bitmap - Wikipedia

    en.wikipedia.org/wiki/Bitwise_trie_with_bitmap

    The AMT uses eight 32-bit bitmaps per node to represent a 256-ary trie that is able to represent an 8 bit sequence per node. With 64-Bit-CPUs (64-bit computing) a variation is to have a 64-ary trie with only one 64-bit bitmap per node that is able to represent a 6 bit sequence. Trie node with bitmap that marks valid child branches.