Search results
Results from the WOW.Com Content Network
The solid ellipse has rotated relative to the dashed ellipse by the angle UCV, which equals (k−1) θ 1. All three planets (red, blue and green) are at the same distance r from the center of force C. It is required to make a body move in a curve that revolves about the center of force in the same manner as another body in the same curve at ...
All eight planets in the Solar System orbit the Sun in the direction of the Sun's rotation, which is counterclockwise when viewed from above the Sun's north pole. Six of the planets also rotate about their axis in this same direction. The exceptions – the planets with retrograde rotation – are Venus and Uranus.
In astronomy, perturbation is the complex motion of a massive body subjected to forces other than the gravitational attraction of a single other massive body. [1] The other forces can include a third (fourth, fifth, etc.) body, resistance, as from an atmosphere, and the off-center attraction of an oblate or otherwise misshapen body.
A space vehicle's flight is determined by application of Newton's second law of motion: =, where F is the vector sum of all forces exerted on the vehicle, m is its current mass, and a is the acceleration vector, the instantaneous rate of change of velocity (v), which in turn is the instantaneous rate of change of displacement.
Nodal precession is the precession of the orbital plane of a satellite around the rotational axis of an astronomical body such as Earth.This precession is due to the non-spherical nature of a rotating body, which creates a non-uniform gravitational field.
The common noun ‘moon’ (not capitalized) is used to mean any natural satellite of the other planets. Tidal force is the combination of out-of-balance forces and accelerations of (mostly) solid bodies that raises tides in bodies of liquid (oceans), atmospheres, and strains planets' and satellites' crusts.
Basically, there are also torques from other planets that cause planetary precession which contributes to about 2% of the total precession. Because periodic variations in the torques from the sun and the moon, the wobbling (nutation) comes into place. You can think of precession as the average and nutation as the instantaneous.
In astronomy, the rotation period or spin period [1] of a celestial object (e.g., star, planet, moon, asteroid) has two definitions. The first one corresponds to the sidereal rotation period (or sidereal day), i.e., the time that the object takes to complete a full rotation around its axis relative to the background stars (inertial space).