Search results
Results from the WOW.Com Content Network
p53, also known as Tumor protein P53, cellular tumor antigen p53 (UniProt name), or transformation-related protein 53 (TRP53) is a regulatory protein that is often mutated in human cancers. The p53 proteins (originally thought to be, and often spoken of as, a single protein) are crucial in vertebrates , where they prevent cancer formation. [ 5 ]
The p53 upregulated modulator of apoptosis (PUMA) also known as Bcl-2-binding component 3 (BBC3), is a pro-apoptotic protein, member of the Bcl-2 protein family. [5] [6] In humans, the Bcl-2-binding component 3 protein is encoded by the BBC3 gene.
Part of this pathway includes alpha-interferon and beta-interferon, which induce transcription of the p53 gene, resulting in the increase of p53 protein level and enhancement of cancer cell-apoptosis. [85] p53 prevents the cell from replicating by stopping the cell cycle at G1, or interphase, to give the cell time to repair; however, it will ...
The BH3 interacting-domain death agonist, or BID, gene is a pro-apoptotic member of the Bcl-2 protein family. [5] Bcl-2 family members share one or more of the four characteristic domains of homology entitled the Bcl-2 homology (BH) domains (named BH1, BH2, BH3 and BH4), and can form hetero- or homodimers.
Activation of a suicide gene can cause death through a variety of pathways, but one important cellular "switch" to induce apoptosis is the p53 protein. Stimulation or introduction (through gene therapy ) of suicide genes is a potential way of treating cancer or other proliferative diseases.
TIGAR increases glycolytic rate and NADPH levels which allows the cancer cells to maintain fast growth rates. [32] However, TIGAR may also have an inhibitory effect on cancer development by preventing cellular proliferation through its role in p53 -mediated cell cycle arrest. [13]
P53 causes cells to enter apoptosis and disrupt further cell division therefore preventing that cell from becoming cancerous (16). In the majority of cancers it is the p53 pathway that has become mutated resulting in lack of ability to terminate dysfunctional cells.
It induces apoptosis through a pathway that involves mitochondria but does not rely on the p53 protein or death receptors typically involved in cell death. [7] In healthy cells, apoptin stays in the cytoplasm, but in cancer cells, it moves to the nucleus after being activated by a process called phosphorylation .