enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Factorial - Wikipedia

    en.wikipedia.org/wiki/Factorial

    The factorial function is a common feature in scientific calculators. [73] It is also included in scientific programming libraries such as the Python mathematical functions module [74] and the Boost C++ library. [75]

  3. Double factorial - Wikipedia

    en.wikipedia.org/wiki/Double_factorial

    The ordinary factorial, when extended to the gamma function, has a pole at each negative integer, preventing the factorial from being defined at these numbers. However, the double factorial of odd numbers may be extended to any negative odd integer argument by inverting its recurrence relation n ! ! = n × ( n − 2 ) ! ! {\displaystyle n!!=n ...

  4. Fixed-point combinator - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_combinator

    That is, two functions are equal if they perform the same mapping. Lambda calculus and programming languages regard function identity as an intensional property. A function's identity is based on its implementation. A lambda calculus function (or term) is an implementation of a mathematical function.

  5. Gamma function - Wikipedia

    en.wikipedia.org/wiki/Gamma_function

    In mathematics, the gamma function (represented by Γ, capital Greek letter gamma) is the most common extension of the factorial function to complex numbers.Derived by Daniel Bernoulli, the gamma function () is defined for all complex numbers except non-positive integers, and for every positive integer =, () = ()!.

  6. Stirling's approximation - Wikipedia

    en.wikipedia.org/wiki/Stirling's_approximation

    For all positive integers, ! = (+), where Γ denotes the gamma function. However, the gamma function, unlike the factorial, is more broadly defined for all complex numbers other than non-positive integers; nevertheless, Stirling's formula may still be applied.

  7. Lambda calculus - Wikipedia

    en.wikipedia.org/wiki/Lambda_calculus

    Consider the factorial function F(n) recursively defined by F(n) = 1, if n = 0; else n × F(n − 1). In the lambda expression which is to represent this function, a parameter (typically the first one) will be assumed to receive the lambda expression itself as its value, so that calling it – applying it to an argument – will amount to ...

  8. Computational complexity of mathematical operations - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    The elementary functions are constructed by composing arithmetic operations, the exponential function (), the natural logarithm (), trigonometric functions (,), and their inverses. The complexity of an elementary function is equivalent to that of its inverse, since all elementary functions are analytic and hence invertible by means of Newton's ...

  9. Falling and rising factorials - Wikipedia

    en.wikipedia.org/wiki/Falling_and_rising_factorials

    A similar result holds for the rising factorial and the backward difference operator. The study of analogies of this type is known as umbral calculus. A general theory covering such relations, including the falling and rising factorial functions, is given by the theory of polynomial sequences of binomial type and Sheffer sequences. Falling and ...