enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Principal curvature - Wikipedia

    en.wikipedia.org/wiki/Principal_curvature

    The product k 1 k 2 of the two principal curvatures is the Gaussian curvature, K, and the average (k 1 + k 2)/2 is the mean curvature, H. If at least one of the principal curvatures is zero at every point, then the Gaussian curvature will be 0 and the surface is a developable surface. For a minimal surface, the mean curvature is zero at every ...

  3. Knee of a curve - Wikipedia

    en.wikipedia.org/wiki/Knee_of_a_curve

    The Kneedle algorithm The algorithm detects the best balanced tradeoff based on the mathematical curvature concept, which is defined and well studied for continuous functions. [ 6 ] [ 7 ] Alternatively, the kneepointDetection() function [ 8 ] from the SamSPECTRAL [ 9 ] R package can be used to find the knee point, where is a "phase change" in ...

  4. Euler spiral - Wikipedia

    en.wikipedia.org/wiki/Euler_spiral

    The process of obtaining solution of (x, y) of an Euler spiral can thus be described as: Map L of the original Euler spiral by multiplying with factor a to L′ of the normalized Euler spiral; Find (x′, y′) from the Fresnel integrals; and; Map (x′, y′) to (x, y) by scaling up (denormalize) with factor ⁠ 1 / a ⁠. Note that ⁠ 1 / a ...

  5. Curvature - Wikipedia

    en.wikipedia.org/wiki/Curvature

    is equal to one. This parametrization gives the same value for the curvature, as it amounts to division by r 3 in both the numerator and the denominator in the preceding formula. The same circle can also be defined by the implicit equation F(x, y) = 0 with F(x, y) = x 2 + y 2 – r 2. Then, the formula for the curvature in this case gives

  6. Gaussian curvature - Wikipedia

    en.wikipedia.org/wiki/Gaussian_curvature

    For most points on most “smooth” surfaces, different normal sections will have different curvatures; the maximum and minimum values of these are called the principal curvatures, call these κ 1, κ 2. The Gaussian curvature is the product of the two principal curvatures Κ = κ 1 κ 2.

  7. Hessian matrix - Wikipedia

    en.wikipedia.org/wiki/Hessian_matrix

    The determinant of the Hessian matrix, when evaluated at a critical point of a function, is equal to the Gaussian curvature of the function considered as a manifold. The eigenvalues of the Hessian at that point are the principal curvatures of the function, and the eigenvectors are the principal directions of curvature.

  8. First fundamental form - Wikipedia

    en.wikipedia.org/wiki/First_fundamental_form

    Thus, it enables one to calculate the lengths of curves on the surface and the areas of regions on the surface. The line element ds may be expressed in terms of the coefficients of the first fundamental form as d s 2 = E d u 2 + 2 F d u d v + G d v 2 . {\displaystyle ds^{2}=E\,du^{2}+2F\,du\,dv+G\,dv^{2}\,.}

  9. Mean curvature - Wikipedia

    en.wikipedia.org/wiki/Mean_curvature

    For a surface defined in 3D space, the mean curvature is related to a unit normal of the surface: = ^ where the normal chosen affects the sign of the curvature. The sign of the curvature depends on the choice of normal: the curvature is positive if the surface curves "towards" the normal.