Search results
Results from the WOW.Com Content Network
In a weak formulation, equations or conditions are no longer required to hold absolutely (and this is not even well defined) and has instead weak solutions only with respect to certain "test vectors" or "test functions". In a strong formulation, the solution space is constructed such that these equations or conditions are already fulfilled.
A DAE system of this form is called semi-explicit. [1] Every solution of the second half g of the equation defines a unique direction for x via the first half f of the equations, while the direction for y is arbitrary. But not every point (x,y,t) is a solution of g. The variables in x and the first half f of the equations get the attribute ...
The mel scale (after the word melody) [1] is a perceptual scale of pitches judged by listeners to be equal in distance from one another. The reference point between this scale and normal frequency measurement is defined by assigning a perceptual pitch of 1000 mels to a 1000 Hz tone, 40 dB above the listener's threshold.
Ordinary differential equations occur in many scientific disciplines, including physics, chemistry, biology, and economics. [1] In addition, some methods in numerical partial differential equations convert the partial differential equation into an ordinary differential equation, which must then be solved.
A system with infinitely many solutions is said to be positive-dimensional. A zero-dimensional system with as many equations as variables is sometimes said to be well-behaved. [3] Bézout's theorem asserts that a well-behaved system whose equations have degrees d 1, ..., d n has at most d 1 ⋅⋅⋅d n solutions. This bound is sharp.
This is because the n-dimensional dV element is in general a parallelepiped in the new coordinate system, and the n-volume of a parallelepiped is the determinant of its edge vectors. The Jacobian can also be used to determine the stability of equilibria for systems of differential equations by approximating behavior near an equilibrium point.
The equations are a set of differential equations – over time – of the probabilities that the system occupies each of the different states. The name was proposed in 1940: [ 1 ] [ 2 ] When the probabilities of the elementary processes are known, one can write down a continuity equation for W, from which all other equations can be derived and ...
One difference between the Gaussian and SI systems is in the factor 4π in various formulas that relate the quantities that they define. With SI electromagnetic units, called rationalized, [3] [4] Maxwell's equations have no explicit factors of 4π in the formulae, whereas the inverse-square force laws – Coulomb's law and the Biot–Savart law – do have a factor of 4π attached to the r 2.