enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sieve of Eratosthenes - Wikipedia

    en.wikipedia.org/wiki/Sieve_of_Eratosthenes

    The sieve of Eratosthenes can be expressed in pseudocode, as follows: [8] [9] algorithm Sieve of Eratosthenes is input: an integer n > 1. output: all prime numbers from 2 through n. let A be an array of Boolean values, indexed by integers 2 to n, initially all set to true.

  3. Generation of primes - Wikipedia

    en.wikipedia.org/wiki/Generation_of_primes

    A prime sieve or prime number sieve is a fast type of algorithm for finding primes. There are many prime sieves. The simple sieve of Eratosthenes (250s BCE), the sieve of Sundaram (1934), the still faster but more complicated sieve of Atkin [1] (2003), sieve of Pritchard (1979), and various wheel sieves [2] are most common.

  4. Sieve of Sundaram - Wikipedia

    en.wikipedia.org/wiki/Sieve_of_Sundaram

    In mathematics, the sieve of Sundaram is a variant of the sieve of Eratosthenes, a simple deterministic algorithm for finding all the prime numbers up to a specified integer. It was discovered by Indian student S. P. Sundaram in 1934.

  5. Sieve theory - Wikipedia

    en.wikipedia.org/wiki/Sieve_theory

    Modern sieves include the Brun sieve, the Selberg sieve, the Turán sieve, the large sieve, the larger sieve and the Goldston–Pintz–Yıldırım sieve. One of the original purposes of sieve theory was to try to prove conjectures in number theory such as the twin prime conjecture. While the original broad aims of sieve theory still are ...

  6. Sieve of Atkin - Wikipedia

    en.wikipedia.org/wiki/Sieve_of_Atkin

    The following is pseudocode which combines Atkin's algorithms 3.1, 3.2, and 3.3 [1] by using a combined set s of all the numbers modulo 60 excluding those which are multiples of the prime numbers 2, 3, and 5, as per the algorithms, for a straightforward version of the algorithm that supports optional bit-packing of the wheel; although not specifically mentioned in the referenced paper, this ...

  7. Legendre sieve - Wikipedia

    en.wikipedia.org/wiki/Legendre_sieve

    The Legendre sieve has a problem with fractional parts of terms accumulating into a large error, which means the sieve only gives very weak bounds in most cases. For this reason it is almost never used in practice, having been superseded by other techniques such as the Brun sieve and Selberg sieve. However, since these more powerful sieves are ...

  8. I’m a Financial Planner: This Psychological Hack Is ‘Key’ To ...

    www.aol.com/m-financial-planner-psychological...

    If you have had trouble saving for retirement, putting money away for a down payment, creating a budget, saving for family vacation or other money goals, don't feel too bad, said Brad Klontz, a...

  9. General number field sieve - Wikipedia

    en.wikipedia.org/wiki/General_number_field_sieve

    In order to achieve this speed-up, the number field sieve has to perform computations and factorizations in number fields. This results in many rather complicated aspects of the algorithm, as compared to the simpler rational sieve. The size of the input to the algorithm is log 2 n or the number of bits in the binary representation of n.