Search results
Results from the WOW.Com Content Network
Internal resistance model of a source of voltage, where ε is the electromotive force of the source, R is the load resistance, V is the voltage drop across the load, I is the current delivered by the source, and r is the internal resistance. In electrical engineering, a practical electric power source which is a linear circuit may, according to ...
This is analogous to a real voltage source, such as a battery, which remains near constant-voltage with load provided that the load resistance is much higher than the battery internal resistance. An example of a practical constant velocity generator is a lightly loaded powerful machine, such as a motor , driving a belt .
Internal resistance is a concept that helps model the electrical consequences of the complex chemical reactions inside a battery. It is impossible to directly measure the internal resistance of a battery, but it can be calculated from current and voltage data measured from a circuit.
Most sources of electrical energy (the mains, a battery) are modeled as voltage sources. An ideal voltage source provides no energy when it is loaded by an open circuit (i.e. an infinite impedance), but approaches infinite energy and current when the load resistance approaches zero (a short circuit).
Batteries that are part of a system, such as computer batteries, can have their properties checked and logged in operation to assist in determining remaining charge. A real battery can be modeled as an ideal battery with a specified EMF, in series with an internal resistance. As a battery discharges, the EMF may drop or the internal resistance ...
The equivalent-circuit model is used to simulate the voltage at the cell terminals when an electric current is applied to discharge or recharge it. The most common circuital representation consists of three elements in series: a variable voltage source, representing the open-circuit voltage (OCV) of the cell, a resistor representing ohmic internal resistance of the cell and a set of resistor ...
One is its internal resistance and the other is its compliance voltage. The compliance voltage is the maximum voltage that the current source can supply to a load. Over a given load range, it is possible for some types of real current sources to exhibit nearly infinite internal resistance.
The current generator and the resistor within the dotted line is the Norton representation of a circuit comprising a real generator and is its internal resistance. If an INIC is placed in parallel to that internal resistance, and the INIC has the same magnitude but inverted resistance value, there will be R s {\displaystyle R_{s}} and − R s ...