Search results
Results from the WOW.Com Content Network
The only known powers of 2 with all digits even are 2 1 = 2, 2 2 = 4, 2 3 = 8, 2 6 = 64 and 2 11 = 2048. [12] The first 3 powers of 2 with all but last digit odd is 2 4 = 16, 2 5 = 32 and 2 9 = 512. The next such power of 2 of form 2 n should have n of at least 6 digits.
For example, 10 3 = 1000 and 10 −4 = 0.0001. Exponentiation with base 10 is used in scientific notation to denote large or small numbers. For instance, 299 792 458 m/s (the speed of light in vacuum, in metres per second) can be written as 2.997 924 58 × 10 8 m/s and then approximated as 2.998 × 10 8 m/s.
The sequence starts with a unary operation (the successor function with n = 0), and continues with the binary operations of addition (n = 1), multiplication (n = 2), exponentiation (n = 3), tetration (n = 4), pentation (n = 5), etc. Various notations have been used to represent hyperoperations.
f is continuous at any one point (Rudin, 1976, chapter 8, exercise 6). f is increasing on any interval. For the uniqueness, one must impose some regularity condition, since other functions satisfying f ( x + y ) = f ( x ) f ( y ) {\displaystyle f(x+y)=f(x)f(y)} can be constructed using a basis for the real numbers over the rationals , as ...
Any real number can be written in the form m × 10 ^ n in many ways: for example, 350 can be written as 3.5 × 10 2 or 35 × 10 1 or 350 × 10 0. In normalized scientific notation (called "standard form" in the United Kingdom), the exponent n is chosen so that the absolute value of m remains at least one but less than ten ( 1 ≤ | m | < 10 ).
Solving the inverse relation, as in the previous section, yields the expected 0 i = 1 and −1 i = 0, with negative values of n giving infinite results on the imaginary axis. Plotted in the complex plane , the entire sequence spirals to the limit 0.4383 + 0.3606 i , which could be interpreted as the value where n is infinite.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The sequence of powers of ten can also be extended to negative powers. Similar to the positive powers, the negative power of 10 related to a short scale name can be determined based on its Latin name-prefix using the following formula: 10 −[(prefix-number + 1) × 3] Examples: billionth = 10 −[(2 + 1) × 3] = 10 −9