Search results
Results from the WOW.Com Content Network
The van is installed with conventional cable measuring systems for quickly reaching the location of any cable fault. In 20 years that followed, over 2000 fault location vehicles were manufactured, more than half of which were intended for the former USSR. These methods of cable fault location quickly became established in Western Europe as well.
The Murray loop bridge is a bridge circuit used for locating faults in underground or underwater cables. [1] [2] It has been used for more than 100 years [3] but is being replaced by the more precise Time-domain reflectometer. One end of the faulted cable is connected through a pair of resistors to the voltage source.
Fault location techniques can be broadly divided into terminal methods, which use voltages and currents measured at the ends of the cable, and tracer methods, which require inspection along the length of the cable. Terminal methods can be used to locate the general area of the fault, to expedite tracing on a long or buried cable. [5]
Time domain reflectometry is used in semiconductor failure analysis as a non-destructive method for the location of defects in semiconductor device packages. The TDR provides an electrical signature of individual conductive traces in the device package, and is useful for determining the location of opens and shorts.
VLF cable testing (Very Low Frequency) is a technique for testing of medium and high voltage (MV and HV) cables. VLF systems are advantageous in that they can be manufactured to be small and lightweight; making them useful – especially for field testing where transport and space can be issues.
Fault detection, isolation, and recovery (FDIR) is a subfield of control engineering which concerns itself with monitoring a system, identifying when a fault has occurred, and pinpointing the type of fault and its location. Two approaches can be distinguished: A direct pattern recognition of sensor readings that indicate a fault and an analysis ...
As a new era begins in Chapel Hill, North Carolina, one UNC alum is taking advantage of the opportunity with a perfect two-word trademark for the occasion.
Time-domain reflectometer for electrical cable fault detection. Because damage to the cable can cause reflections, an instrument called an electrical time-domain reflectometer (ETDR; for electrical cables) or an optical time-domain reflectometer (OTDR; for optical cables) can be used to locate the damaged part of a cable. These instruments work ...