enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Infimum and supremum - Wikipedia

    en.wikipedia.org/wiki/Infimum_and_supremum

    If the supremum of exists, it is unique, and if b is an upper bound of , then the supremum of is less than or equal to b. Consequently, the supremum is also referred to as the least upper bound (or LUB). [1] The infimum is, in a precise sense, dual to the concept of a

  3. Limit inferior and limit superior - Wikipedia

    en.wikipedia.org/wiki/Limit_inferior_and_limit...

    Hence, it is the supremum of the limit points. The infimum/inferior/inner limit is a set where all of these accumulation sets meet. That is, it is the intersection of all of the accumulation sets. When ordering by set inclusion, the infimum limit is the greatest lower bound on the set of accumulation points because it is contained in each of ...

  4. Essential infimum and essential supremum - Wikipedia

    en.wikipedia.org/wiki/Essential_infimum_and...

    Exactly in the same way one defines the essential infimum as the supremum of the essential lower bound s, that is, ⁡ = {: ({: <}) =} if the set of essential lower bounds is nonempty, and as otherwise; again there is an alternative expression as ⁡ = {: ()} (with this being if the set is empty).

  5. Least-upper-bound property - Wikipedia

    en.wikipedia.org/wiki/Least-upper-bound_property

    In mathematics, the least-upper-bound property (sometimes called completeness, supremum property or l.u.b. property) [1] is a fundamental property of the real numbers. More generally, a partially ordered set X has the least-upper-bound property if every non-empty subset of X with an upper bound has a least upper bound (supremum) in X .

  6. Order theory - Wikipedia

    en.wikipedia.org/wiki/Order_theory

    This concept is also called supremum or join, and for a set S one writes sup(S) or for its least upper bound. Conversely, the greatest lower bound is known as infimum or meet and denoted inf(S) or . These concepts play an important role in many applications of order theory.

  7. Set-theoretic limit - Wikipedia

    en.wikipedia.org/wiki/Set-theoretic_limit

    It is a common misconception that the limits infimum and supremum described here involve sets of accumulation points, that is, sets of =, where each is in some . This is only true if convergence is determined by the discrete metric (that is, x n → x {\displaystyle x_{n}\to x} if there is N {\displaystyle N} such that x n = x {\displaystyle x ...

  8. Completeness (order theory) - Wikipedia

    en.wikipedia.org/wiki/Completeness_(order_theory)

    The supremum of B is then equal to the infimum of X: since each element of X is an upper bound of B, sup B is smaller than all elements of X, i.e. sup B is in B. It is the greatest element of B and hence the infimum of X. In a dual way, the existence of all infima implies the existence of all suprema.

  9. Upper and lower bounds - Wikipedia

    en.wikipedia.org/wiki/Upper_and_lower_bounds

    An upper bound is said to be a tight upper bound, a least upper bound, or a supremum, if no smaller value is an upper bound. Similarly, a lower bound is said to be a tight lower bound, a greatest lower bound, or an infimum, if no greater value is a lower bound.