Search results
Results from the WOW.Com Content Network
supremum = least upper bound. A lower bound of a subset of a partially ordered set (,) is an element of such that . for all .; A lower bound of is called an infimum (or greatest lower bound, or meet) of if
The supremum/superior/outer limit is a set that joins these accumulation sets together. That is, it is the union of all of the accumulation sets. When ordering by set inclusion, the supremum limit is the least upper bound on the set of accumulation points because it contains each of them. Hence, it is the supremum of the limit points.
In mathematics, the least-upper-bound property (sometimes called completeness, supremum property or l.u.b. property) [1] is a fundamental property of the real numbers. More generally, a partially ordered set X has the least-upper-bound property if every non-empty subset of X with an upper bound has a least upper bound (supremum) in X .
The supremum of this function (largest value) is 5, and the infimum (smallest value) is −4. However, the function takes these values only on the sets {} and {}, respectively, which are of measure zero. Everywhere else, the function takes the value 2.
The maximum of a subset of a preordered set is an element of which is greater than or equal to any other element of , and the minimum of is again defined dually. In the particular case of a partially ordered set , while there can be at most one maximum and at most one minimum there may be multiple maximal or minimal elements.
An element of is the join (or least upper bound or supremum) of in if the following two conditions are satisfied: x ≤ j and y ≤ j {\displaystyle x\leq j{\text{ and }}y\leq j} (that is, j {\displaystyle j} is an upper bound of x and y {\displaystyle x{\text{ and }}y} ).
In mathematics, a complete lattice is a partially ordered set in which all subsets have both a supremum and an infimum . A conditionally complete lattice satisfies at least one of these properties for bounded subsets. For comparison, in a general lattice, only pairs of elements need to have a supremum and an infimum. Every non-empty finite ...
is a function space.Its elements are the essentially bounded measurable functions. [2]More precisely, is defined based on an underlying measure space, (,,). Start with the set of all measurable functions from to which are essentially bounded, that is, bounded except on a set of measure zero.