enow.com Web Search

  1. Ad

    related to: coax cable attenuation loss chart example

Search results

  1. Results from the WOW.Com Content Network
  2. Coaxial cable - Wikipedia

    en.wikipedia.org/wiki/Coaxial_cable

    The best coaxial cable impedances were experimentally determined at Bell Laboratories in 1929 to be 77 Ω for low-attenuation, 60 Ω for high-voltage, and 30 Ω for high-power. For a coaxial cable with air dielectric and a shield of a given inner diameter, the attenuation is minimized by choosing the diameter of the inner conductor to give a ...

  3. Skin effect - Wikipedia

    en.wikipedia.org/wiki/Skin_effect

    Four stages of skin effect in a coax showing the effect on inductance. Diagrams show a cross-section of the coaxial cable. Color code: black = overall insulating sheath, tan = conductor, white = dielectric, green = current into the diagram, blue = current coming out of the diagram, dashed black lines with arrowheads = magnetic flux (B). The ...

  4. Characteristic impedance - Wikipedia

    en.wikipedia.org/wiki/Characteristic_impedance

    The characteristic impedance of coaxial cables (coax) is commonly chosen to be 50 Ω for RF and microwave applications. Coax for video applications is usually 75 Ω for its lower loss. See also: Nominal impedance § 50 Ω and 75 Ω

  5. Telegrapher's equations - Wikipedia

    en.wikipedia.org/wiki/Telegrapher's_equations

    Equivalent circuit of an unbalanced transmission line (such as coaxial cable) where: 2/Z o is the trans-admittance of VCCS (Voltage Controlled Current Source), x is the length of transmission line, Z(s) ≡ Z o (s) is the characteristic impedance, T(s) is the propagation function, γ(s) is the propagation "constant", s ≡ j ω, and j 2 ≡ −1.

  6. Transmission line - Wikipedia

    en.wikipedia.org/wiki/Transmission_line

    Typical values of Z 0 are 50 or 75 ohms for a coaxial cable, about 100 ohms for a twisted pair of wires, and about 300 ohms for a common type of untwisted pair used in radio transmission. Propagation delay is proportional to the length of the transmission line and is never less than the length divided by the speed of light .

  7. Scattering parameters - Wikipedia

    en.wikipedia.org/wiki/Scattering_parameters

    An amplifier operating under linear (small signal) conditions is a good example of a non-reciprocal network and a matched attenuator is an example of a reciprocal network. In the following cases we will assume that the input and output connections are to ports 1 and 2 respectively which is the most common convention.

  8. Primary line constants - Wikipedia

    en.wikipedia.org/wiki/Primary_line_constants

    Furthermore, while G has virtually no effect at audio frequency, it can cause noticeable losses at high frequency with many of the dielectric materials used in cables due to a high loss tangent. Avoiding the losses caused by G is the reason many cables designed for use at UHF are air-insulated or foam-insulated (which makes them virtually air ...

  9. Standing wave ratio - Wikipedia

    en.wikipedia.org/wiki/Standing_wave_ratio

    For example, a certain antenna used well away from its resonant frequency may have an SWR of 6:1. For a frequency of 3.5 MHz, with that antenna fed through 75 meters of RG-8A coax, the loss due to standing waves would be 2.2 dB. However the same 6:1 mismatch through 75 meters of RG-8A coax would incur 10.8 dB of loss at 146 MHz.

  1. Ad

    related to: coax cable attenuation loss chart example