enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Symmetry (physics) - Wikipedia

    en.wikipedia.org/wiki/Symmetry_(physics)

    The above ideas lead to the useful idea of invariance when discussing observed physical symmetry; this can be applied to symmetries in forces as well.. For example, an electric field due to an electrically charged wire of infinite length is said to exhibit cylindrical symmetry, because the electric field strength at a given distance r from the wire will have the same magnitude at each point on ...

  3. Symmetry - Wikipedia

    en.wikipedia.org/wiki/Symmetry

    Symmetry in physics has been generalized to mean invariance—that is, lack of change—under any kind of transformation, for example arbitrary coordinate transformations. [17] This concept has become one of the most powerful tools of theoretical physics, as it has become evident that practically all laws of nature originate in symmetries.

  4. CPT symmetry - Wikipedia

    en.wikipedia.org/wiki/CPT_symmetry

    Charge, parity, and time reversal symmetry is a fundamental symmetry of physical laws under the simultaneous transformations of charge conjugation (C), parity transformation (P), and time reversal (T). CPT is the only combination of C, P, and T that is observed to be an exact symmetry of nature at the fundamental level.

  5. Time-translation symmetry - Wikipedia

    en.wikipedia.org/wiki/Time-translation_symmetry

    Time-translation symmetry is the law that the laws of physics are unchanged (i.e. invariant) under such a transformation. Time-translation symmetry is a rigorous way to formulate the idea that the laws of physics are the same throughout history. Time-translation symmetry is closely connected, via Noether's theorem, to conservation of energy. [1]

  6. C-symmetry - Wikipedia

    en.wikipedia.org/wiki/C-symmetry

    The term C-symmetry is an abbreviation of the phrase "charge conjugation symmetry", and is used in discussions of the symmetry of physical laws under charge-conjugation. Other important discrete symmetries are P-symmetry (parity) and T-symmetry (time reversal).

  7. CP violation - Wikipedia

    en.wikipedia.org/wiki/CP_violation

    In particle physics, CP violation is a violation of CP-symmetry (or charge conjugation parity symmetry): the combination of C-symmetry (charge conjugation symmetry) and P-symmetry (parity symmetry). CP-symmetry states that the laws of physics should be the same if a particle is interchanged with its antiparticle (C-symmetry) while its spatial ...

  8. T-symmetry - Wikipedia

    en.wikipedia.org/wiki/T-symmetry

    T-symmetry or time reversal symmetry is the theoretical symmetry of physical laws under the transformation of time reversal, T : t ↦ − t . {\displaystyle T:t\mapsto -t.} Since the second law of thermodynamics states that entropy increases as time flows toward the future, in general, the macroscopic universe does not show symmetry under time ...

  9. Symmetry in quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/Symmetry_in_quantum_mechanics

    Symmetries in quantum mechanics describe features of spacetime and particles which are unchanged under some transformation, in the context of quantum mechanics, relativistic quantum mechanics and quantum field theory, and with applications in the mathematical formulation of the standard model and condensed matter physics. In general, symmetry ...