Search results
Results from the WOW.Com Content Network
SDBS includes 14700 1 H NMR spectra and 13000 13 C NMR spectra as well as FT-IR, Raman, ESR, and MS data. The data are stored and displayed as an image of the processed data. Annotation is achieved by a list of the chemical shifts correlated to letters which are also used to label a molecular line drawing.
The FT-IR spectra were recorded using a Nicolet 170SX or a JASCO FT/IR-410 spectrometer. For spectra recorded in the Nicolet spectrometer, the data were stored at intervals of 0.5 cm −1 in the 4,000 – 2,000 cm −1 region and of 0.25 cm −1 in the 2,000 – 400 cm −1 region and the spectral resolution was 0.25 cm −1.
The ratio of the "sample spectrum" to the "background spectrum" is directly related to the sample's absorption spectrum. Accordingly, the technique of "Fourier-transform spectroscopy" can be used both for measuring emission spectra (for example, the emission spectrum of a star), and absorption spectra (for example, the absorption spectrum of a ...
Bruker 700 MHz nuclear magnetic resonance (NMR) spectrometer. Nuclear Magnetic Resonance (NMR) basic principles. Nuclear magnetic resonance (NMR) is a physical phenomenon in which nuclei in a strong constant magnetic field are disturbed by a weak oscillating magnetic field (in the near field [1]) and respond by producing an electromagnetic signal with a frequency characteristic of the magnetic ...
Solid-state 900 MHz (21.1 T [1]) NMR spectrometer at the Canadian National Ultrahigh-field NMR Facility for Solids. Solid-state nuclear magnetic resonance (ssNMR) is a spectroscopy technique used to characterize atomic-level structure and dynamics in solid materials. ssNMR spectra are broader due to nuclear spin interactions which can be categorized as dipolar coupling, chemical shielding ...
Available spectra data and plots for: Infrared spectroscopy (IR) spectra. Fourier transform spectroscopy (FT-IR) [78] Raman spectroscopy (IR) [79] Nuclear magnetic resonance (NMR) spectra. 1 H chemical shifts [80] [81] and coupling constants (empirical) 13 C chemical shifts, [80] [81] Boltzmann averaged shifts, and 13 C DEPT spectra; 2D H vs H ...
Free induction decay (FID) nuclear magnetic resonance signal seen from a well shimmed sample. In Fourier transform nuclear magnetic resonance spectroscopy, free induction decay (FID) is the observable nuclear magnetic resonance (NMR) signal generated by non-equilibrium nuclear spin magnetization precessing about the magnetic field (conventionally along z).
FT-ICR was invented by Melvin B. Comisarow [2] and Alan G. Marshall at the University of British Columbia. The first paper appeared in Chemical Physics Letters in 1974. [3] The inspiration was earlier developments in conventional ICR and Fourier-transform nuclear magnetic resonance (FT-NMR) spectrometry.