Search results
Results from the WOW.Com Content Network
[1] [2] The term Chebyshev's inequality may also refer to Markov's inequality, especially in the context of analysis. They are closely related, and some authors refer to Markov's inequality as "Chebyshev's First Inequality," and the similar one referred to on this page as "Chebyshev's Second Inequality."
In mathematics, Chebyshev's sum inequality, named after Pafnuty Chebyshev, states that if ...
Chebyshev's theorem is any of several theorems proven by Russian mathematician Pafnuty Chebyshev. Bertrand's postulate, that for every n there is a prime between n and 2n. Chebyshev's inequality, on the range of standard deviations around the mean, in statistics; Chebyshev's sum inequality, about sums and products of decreasing sequences
the most common choice for function h being either the absolute value (in which case it is known as Markov inequality), or the quadratic function (respectively Chebyshev's inequality). Another useful result is the continuous mapping theorem : if T n is consistent for θ and g (·) is a real-valued function continuous at point θ , then g ( T n ...
In probability theory, the coupon collector's problem refers to mathematical analysis of "collect all coupons and win" contests. It asks the following question: if each box of a given product (e.g., breakfast cereals) contains a coupon, and there are n different types of coupons, what is the probability that more than t boxes need to be bought ...
In probability theory, the multidimensional Chebyshev's inequality [1] is a generalization of Chebyshev's inequality, which puts a bound on the probability of the event that a random variable differs from its expected value by more than a specified amount.
The case for squares, k = 2, was answered by Lagrange in 1770, who proved that every positive integer is the sum of at most four squares. The general case was proved by Hilbert in 1909, using algebraic techniques which gave no explicit bounds. An important breakthrough was the application of analytic tools to the problem by Hardy and Littlewood.
It is a sharper bound than the first- or second-moment-based tail bounds such as Markov's inequality or Chebyshev's inequality, which only yield power-law bounds on tail decay. However, when applied to sums the Chernoff bound requires the random variables to be independent, a condition that is not required by either Markov's inequality or ...