enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Surface roughness - Wikipedia

    en.wikipedia.org/wiki/Surface_roughness

    Surface roughness, often shortened to roughness, is a component of surface finish (surface texture). It is quantified by the deviations in the direction of the normal vector of a real surface from its ideal form. If these deviations are large, the surface is rough; if they are small, the surface is smooth.

  3. Rugosity - Wikipedia

    en.wikipedia.org/wiki/Rugosity

    Rugosity calculations are commonly used in materials science to characterize surfaces, amongst others, in marine science to characterize seafloor habitats. A common technique to measure seafloor rugosity is Risk's chain-and-tape method [2] but with the advent of underwater photography less invasive quantitative methods have been developed.

  4. Surface finish - Wikipedia

    en.wikipedia.org/wiki/Surface_finish

    Many factors contribute to the surface finish in manufacturing. In forming processes, such as molding or metal forming, surface finish of the die determines the surface finish of the workpiece. In machining, the interaction of the cutting edges and the microstructure of the material being cut both contribute to the final surface finish.

  5. Surface metrology - Wikipedia

    en.wikipedia.org/wiki/Surface_metrology

    Surface metrology is the measurement of small-scale features on surfaces, and is a branch of metrology.Surface primary form, surface fractality, and surface finish (including surface roughness) are the parameters most commonly associated with the field.

  6. Asperity (materials science) - Wikipedia

    en.wikipedia.org/wiki/Asperity_(materials_science)

    In materials science, asperity, defined as "unevenness of surface, roughness, ruggedness" (from the Latin asper—"rough" [1]), has implications (for example) in physics and seismology. Smooth surfaces, even those polished to a mirror finish, are not truly smooth on a microscopic scale.

  7. Moody chart - Wikipedia

    en.wikipedia.org/wiki/Moody_chart

    In engineering, the Moody chart or Moody diagram (also Stanton diagram) is a graph in non-dimensional form that relates the Darcy–Weisbach friction factor f D, Reynolds number Re, and surface roughness for fully developed flow in a circular pipe. It can be used to predict pressure drop or flow rate down such a pipe.

  8. Ellipsometry - Wikipedia

    en.wikipedia.org/wiki/Ellipsometry

    The polarization change is quantified by the amplitude ratio, Ψ, and the phase difference, Δ (defined below). Because the signal depends on the thickness as well as the material properties, ellipsometry can be a universal tool for contact free determination of thickness and optical constants of films of all kinds. [3]

  9. Waviness - Wikipedia

    en.wikipedia.org/wiki/Waviness

    Waviness measurements are not as common as roughness measurement however there are important applications. For example, waviness in bearing balls and bearing races is one of the reasons for vibrations and noise in ball bearings. Other application examples are waviness in flat milled sealing surfaces, "orange peel" on painted surfaces, and ...