enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. RSA (cryptosystem) - Wikipedia

    en.wikipedia.org/wiki/RSA_(cryptosystem)

    The security of RSA relies on the practical difficulty of factoring the product of two large prime numbers, the "factoring problem". Breaking RSA encryption is known as the RSA problem. Whether it is as difficult as the factoring problem is an open question. [3] There are no published methods to defeat the system if a large enough key is used.

  3. RSA problem - Wikipedia

    en.wikipedia.org/wiki/RSA_problem

    More specifically, the RSA problem is to efficiently compute P given an RSA public key (N, e) and a ciphertext C ≡ P e (mod N). The structure of the RSA public key requires that N be a large semiprime (i.e., a product of two large prime numbers), that 2 < e < N, that e be coprime to φ(N), and that 0 ≤ C < N.

  4. RSA Factoring Challenge - Wikipedia

    en.wikipedia.org/wiki/RSA_Factoring_Challenge

    The RSA Factoring Challenge was a challenge put forward by RSA Laboratories on March 18, 1991 [1] to encourage research into computational number theory and the practical difficulty of factoring large integers and cracking RSA keys used in cryptography.

  5. Integer factorization records - Wikipedia

    en.wikipedia.org/wiki/Integer_factorization_records

    Integer factorization is the process of determining which prime numbers divide a given positive integer.Doing this quickly has applications in cryptography.The difficulty depends on both the size and form of the number and its prime factors; it is currently very difficult to factorize large semiprimes (and, indeed, most numbers that have no small factors).

  6. Texas Instruments signing key controversy - Wikipedia

    en.wikipedia.org/wiki/Texas_Instruments_signing...

    A TI-83+ graphing calculator displaying a sine wave. The Texas Instruments signing key controversy resulted from Texas Instruments' (TI) response to a project to factorize the 512-bit RSA cryptographic keys needed to write custom firmware to TI devices.

  7. Modular exponentiation - Wikipedia

    en.wikipedia.org/wiki/Modular_exponentiation

    One could use a calculator to compute 4 13; this comes out to 67,108,864. Taking this value modulo 497, the answer c is determined to be 445. Note that b is only one digit in length and that e is only two digits in length, but the value b e is 8 digits in length.

  8. Deterministic encryption - Wikipedia

    en.wikipedia.org/wiki/Deterministic_encryption

    A deterministic encryption scheme (as opposed to a probabilistic encryption scheme) is a cryptosystem which always produces the same ciphertext for a given plaintext and key, even over separate executions of the encryption algorithm.

  9. RSA numbers - Wikipedia

    en.wikipedia.org/wiki/RSA_numbers

    The first RSA numbers generated, from RSA-100 to RSA-500, were labeled according to their number of decimal digits. Later, beginning with RSA-576, binary digits are counted instead. An exception to this is RSA-617, which was created before the change in the numbering scheme.