Search results
Results from the WOW.Com Content Network
In biochemistry, a ligase is an enzyme that can catalyze the joining of two molecules by forming a new chemical bond.This is typically via hydrolysis of a small pendant chemical group on one of the molecules, typically resulting in the formation of new C-O, C-S, or C-N bonds.
Cytosine, thymine, and uracil are pyrimidines, hence the glycosidic bonds form between their 1 nitrogen and the 1' -OH of the deoxyribose. For both the purine and pyrimidine bases, the phosphate group forms a bond with the deoxyribose sugar through an ester bond between one of its negatively charged oxygen groups and the 5' -OH of the sugar. [ 2 ]
In contrast to the definition of ligand in metalorganic and inorganic chemistry, in biochemistry it is ambiguous whether the ligand generally binds at a metal site, as is the case in hemoglobin. In general, the interpretation of ligand is contextual with regards to what sort of binding has been observed.
Finally, a phosphodiester bond between the two DNA ends is formed via the nucleophilic attack of the 3'-hydroxyl at the end of a DNA strand on the activated 5′-phosphoryl group of another. [4] A nick in the DNA (i.e. a break in one strand of a double-stranded DNA) can be repaired very efficiently by the ligase. However, a complicating feature ...
Molecular binding is an attractive interaction between two molecules that results in a stable association in which the molecules are in close proximity to each other. It is formed when atoms or molecules bind together by sharing of electrons.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Specifically, it is the phosphodiester bonds that link the 3' carbon atom of one sugar molecule and the 5' carbon atom of another (hence the name 3', 5' phosphodiester linkage used with reference to this kind of bond in DNA and RNA chains). [3] The involved saccharide groups are deoxyribose in DNA and ribose in RNA.
Between A and T there are two hydrogen bonds, while there are three between C and G. Right: two complementary strands of DNA. Complementarity is achieved by distinct interactions between nucleobases : adenine , thymine ( uracil in RNA ), guanine and cytosine .