enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lithium perchlorate - Wikipedia

    en.wikipedia.org/wiki/Lithium_perchlorate

    Lithium perchlorate is also used as an electrolyte salt in lithium-ion batteries.Lithium perchlorate is chosen over alternative salts such as lithium hexafluorophosphate or lithium tetrafluoroborate when its superior electrical impedance, conductivity, hygroscopicity, and anodic stability properties are of importance to the specific application. [11]

  3. Lithium chlorate - Wikipedia

    en.wikipedia.org/wiki/Lithium_chlorate

    Lithium chlorate has one of the highest solubilities in water for a chemical compound. It is also a six-electron oxidant. Its electrochemical reduction is facilitated by acid, electrocatalysts and redox mediators. These properties make lithium chlorate a useful oxidant for high energy density flow batteries. [5]

  4. List of nuclides - Wikipedia

    en.wikipedia.org/wiki/List_of_nuclides

    The number of protons (Z column) and number of neutrons (N column). energy column The column labeled "energy" denotes the energy equivalent of the mass of a neutron minus the mass per nucleon of this nuclide (so all nuclides get a positive value) in MeV, formally: m n − m nuclide / A, where A = Z + N is the mass number. Note that this means ...

  5. Neutron number - Wikipedia

    en.wikipedia.org/wiki/Neutron_number

    The neutron number (symbol N) is the number of neutrons in a nuclide. Atomic number (proton number) plus neutron number equals mass number : Z + N = A . The difference between the neutron number and the atomic number is known as the neutron excess: D = N − Z = A − 2 Z .

  6. Table of nuclides - Wikipedia

    en.wikipedia.org/wiki/Table_of_nuclides

    The only stable nuclides having an odd number of protons and an odd number of neutrons are hydrogen-2, lithium-6, boron-10, nitrogen-14 and (observationally) tantalum-180m. This is because the mass–energy of such atoms is usually higher than that of their neighbors on the same isobaric chain, so most of them are unstable to beta decay .

  7. Lithium chloride - Wikipedia

    en.wikipedia.org/wiki/Lithium_chloride

    Lithium chloride is a chemical compound with the formula Li Cl.The salt is a typical ionic compound (with certain covalent characteristics), although the small size of the Li + ion gives rise to properties not seen for other alkali metal chlorides, such as extraordinary solubility in polar solvents (83.05 g/100 mL of water at 20 °C) and its hygroscopic properties.

  8. Mass number - Wikipedia

    en.wikipedia.org/wiki/Mass_number

    For other isotopes, the isotopic mass is usually within 0.1 u of the mass number. For example, 35 Cl (17 protons and 18 neutrons) has a mass number of 35 and an isotopic mass of 34.96885. [7] The difference of the actual isotopic mass minus the mass number of an atom is known as the mass excess, [8] which for 35 Cl is –0.03115.

  9. Neutron–proton ratio - Wikipedia

    en.wikipedia.org/wiki/Neutron–proton_ratio

    The exceptions are beryllium (N/Z = 1.25) and every element with odd atomic number between 9 and 19 inclusive (though in those cases N = Z + 1 always allows for stability). Hydrogen-1 ( N / Z ratio = 0) and helium-3 ( N / Z ratio = 0.5) are the only stable isotopes with neutron–proton ratio under one.