enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Field equation - Wikipedia

    en.wikipedia.org/wiki/Field_equation

    In theoretical physics and applied mathematics, a field equation is a partial differential equation which determines the dynamics of a physical field, specifically the time evolution and spatial distribution of the field. The solutions to the equation are mathematical functions which correspond directly to the field, as functions of time and space.

  3. Einstein field equations - Wikipedia

    en.wikipedia.org/wiki/Einstein_field_equations

    For example, Maxwell's equations of electromagnetism are linear in the electric and magnetic fields, and charge and current distributions (i.e. the sum of two solutions is also a solution); another example is Schrödinger's equation of quantum mechanics, which is linear in the wavefunction.

  4. Exact solutions in general relativity - Wikipedia

    en.wikipedia.org/wiki/Exact_solutions_in_general...

    A field is described by a Lagrangian, varying with respect to the field should give the field equations and varying with respect to the metric should give the stress-energy contribution due to the field.) Finally, when all the contributions to the stress–energy tensor are added up, the result must be a solution of the Einstein field equations

  5. Solutions of the Einstein field equations - Wikipedia

    en.wikipedia.org/wiki/Solutions_of_the_Einstein...

    This is clearly not enough, as there are only 14 equations (10 from the field equations and 4 from the continuity equation) for 20 unknowns (10 metric components and 10 stress–energy tensor components). Equations of state are missing. In the most general case, it's easy to see that at least 6 more equations are required, possibly more if ...

  6. Classical field theory - Wikipedia

    en.wikipedia.org/wiki/Classical_field_theory

    A field theory tends to be expressed mathematically by using Lagrangians. This is a function that, when subjected to an action principle, gives rise to the field equations and a conservation law for the theory. The action is a Lorentz scalar, from which the field equations and symmetries can be readily derived.

  7. General relativity - Wikipedia

    en.wikipedia.org/wiki/General_relativity

    The Einstein field equations are nonlinear and considered difficult to solve. Einstein used approximation methods in working out initial predictions of the theory. But in 1916, the astrophysicist Karl Schwarzschild found the first non-trivial exact solution to the Einstein field equations, the Schwarzschild metric. This solution laid the ...

  8. Maxwell's equations - Wikipedia

    en.wikipedia.org/wiki/Maxwell's_equations

    Electric field from positive to negative charges. Gauss's law describes the relationship between an electric field and electric charges: an electric field points away from positive charges and towards negative charges, and the net outflow of the electric field through a closed surface is proportional to the enclosed charge, including bound charge due to polarization of material.

  9. Geodesics in general relativity - Wikipedia

    en.wikipedia.org/wiki/Geodesics_in_general...

    Albert Einstein believed that the geodesic equation of motion can be derived from the field equations for empty space, i.e. from the fact that the Ricci curvature vanishes. He wrote: [ 5 ] It has been shown that this law of motion — generalized to the case of arbitrarily large gravitating masses — can be derived from the field equations of ...