enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gravity of Earth - Wikipedia

    en.wikipedia.org/wiki/Gravity_of_Earth

    The gravity g′ at depth d is given by g′ = g(1 − d/R) where g is acceleration due to gravity on the surface of the Earth, d is depth and R is the radius of the Earth. If the density decreased linearly with increasing radius from a density ρ 0 at the center to ρ 1 at the surface, then ρ(r) = ρ 0 − (ρ 0 − ρ 1) r / R, and the ...

  3. Theoretical gravity - Wikipedia

    en.wikipedia.org/wiki/Theoretical_gravity

    For such problems, the rotation of the Earth would be immaterial unless variations with longitude are modeled. Also, the variation in gravity with altitude becomes important, especially for highly elliptical orbits. The Earth Gravitational Model 1996 contains 130,676 coefficients that refine the model of the Earth's gravitational field.

  4. Gravitational acceleration - Wikipedia

    en.wikipedia.org/wiki/Gravitational_acceleration

    [2] [3] At different points on Earth's surface, the free fall acceleration ranges from 9.764 to 9.834 m/s 2 (32.03 to 32.26 ft/s 2), [4] depending on altitude, latitude, and longitude. A conventional standard value is defined exactly as 9.80665 m/s² (about 32.1740 ft/s²). Locations of significant variation from this value are known as gravity ...

  5. Geopotential height - Wikipedia

    en.wikipedia.org/wiki/Geopotential_height

    Geopotential height differs from geometric height (as given by a tape measure) because Earth's gravity is not constant, varying markedly with altitude and latitude; thus, a 1-m geopotential height difference implies a different vertical distance in physical space: "the unit-mass must be lifted higher at the equator than at the pole, if the same ...

  6. Geoid - Wikipedia

    en.wikipedia.org/wiki/Geoid

    In maps and common use, the height over the mean sea level (such as orthometric height, H) is used to indicate the height of elevations while the ellipsoidal height, h, results from the GPS system and similar GNSS: = (An analogous relationship exists between normal heights and the quasigeoid, which disregards local density variations.)

  7. Gravity anomaly - Wikipedia

    en.wikipedia.org/wiki/Gravity_anomaly

    The gravity anomaly at a location on the Earth's surface is the difference between the observed value of gravity and the value predicted by a theoretical model. If the Earth were an ideal oblate spheroid of uniform density, then the gravity measured at every point on its surface would be given precisely by a simple algebraic expression.

  8. Vertical deflection - Wikipedia

    en.wikipedia.org/wiki/Vertical_deflection

    The value of η is the product of cosine of latitude and the difference between the astronomic longitude and the longitude (taking east longitudes to be positive and west longitudes to be negative). When a new mapping datum replaces the old, with new geodetic latitudes and longitudes on a new ellipsoid, the calculated vertical deflections will ...

  9. EPSG Geodetic Parameter Dataset - Wikipedia

    en.wikipedia.org/wiki/EPSG_Geodetic_Parameter...

    EPSG:4326 - WGS 84, latitude/longitude coordinate system based on the Earth's center of mass, used by the Global Positioning System among others. EPSG:3857 - Web Mercator projection used for display by many web-based mapping tools, including Google Maps and OpenStreetMap.