Search results
Results from the WOW.Com Content Network
Kinetic friction, also known as dynamic friction or sliding friction, occurs when two objects are moving relative to each other and rub together (like a sled on the ground). The coefficient of kinetic friction is typically denoted as μ k, and is usually less than the coefficient of static friction for the same materials.
Sliding friction (also called kinetic friction) is a contact force that resists the sliding motion of two objects or an object and a surface. Sliding friction is almost always less than that of static friction; this is why it is easier to move an object once it starts moving rather than to get the object to begin moving from a rest position.
Free body and kinetic diagrams of an inclined block. In dynamics a kinetic diagram is a pictorial device used in analyzing mechanics problems when there is determined to be a net force and/or moment acting on a body. They are related to and often used with free body diagrams, but depict only the net force and moment rather than all of the ...
The load then starts sliding, and the friction coefficient decreases to the value corresponding to load times the dynamic friction. Since this frictional force will be lower than the static value, the load accelerates until the decompressing spring can no longer generate enough force to overcome dynamic friction, and the load stops moving.
Traction can also refer to the maximum tractive force between a body and a surface, as limited by available friction; when this is the case, traction is often expressed as the ratio of the maximum tractive force to the normal force and is termed the coefficient of traction (similar to coefficient of friction).
A difference to dynamic sliding contact problems is that there is more variety in the state of different surface particles. Whereas the contact patch in a sliding problem continuously consists of more or less the same particles, in a rolling contact problem particles enter and leave the contact patch incessantly.
Coulomb damping dissipates energy constantly because of sliding friction. The magnitude of sliding friction is a constant value; independent of surface area, displacement or position, and velocity. The system undergoing Coulomb damping is periodic or oscillating and restrained by the sliding friction.
The degree of relative kinetic energy retained after a collision, termed the restitution, is dependent on the elasticity of the bodies‟ materials.The coefficient of restitution between two given materials is modeled as the ratio [] of the relative post-collision speed of a point of contact along the contact normal, with respect to the relative pre-collision speed of the same point along the ...