enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Depolarization - Wikipedia

    en.wikipedia.org/wiki/Depolarization

    Depolarization is essential to the function of many cells, communication between cells, and the overall physiology of an organism. Action potential in a neuron, showing depolarization, in which the cell's internal charge becomes less negative (more positive), and repolarization, where the internal charge returns to a more negative value.

  3. Cell polarity - Wikipedia

    en.wikipedia.org/wiki/Cell_polarity

    A neuron receives signals from neighboring cells through branched, cellular extensions called dendrites.The neuron then propagates an electrical signal down a specialized axon extension from the basal pole to the synapse, where neurotransmitters are released to propagate the signal to another neuron or effector cell (e.g., muscle or gland).

  4. Action potential - Wikipedia

    en.wikipedia.org/wiki/Action_potential

    This electrical polarization results from a complex interplay between protein structures embedded in the membrane called ion pumps and ion channels. In neurons, the types of ion channels in the membrane usually vary across different parts of the cell, giving the dendrites , axon , and cell body different electrical properties.

  5. Hyperpolarization (biology) - Wikipedia

    en.wikipedia.org/wiki/Hyperpolarization_(biology)

    A nerve impulse causes Na + to enter the cell, resulting in (b) depolarization. At the peak action potential, K + channels open and the cell becomes (c) hyperpolarized. Voltage gated ion channels respond to changes in the membrane potential. Voltage gated potassium, chloride and sodium channels are key components in the generation of the action ...

  6. Repolarization - Wikipedia

    en.wikipedia.org/wiki/Repolarization

    A labeled diagram of an action potential.As seen above, repolarization takes place just after the peak of the action potential, when K + ions rush out of the cell.. In neuroscience, repolarization refers to the change in membrane potential that returns it to a negative value just after the depolarization phase of an action potential which has changed the membrane potential to a positive value.

  7. Excitatory synapse - Wikipedia

    en.wikipedia.org/wiki/Excitatory_synapse

    Depolarization, a deviation from a neuron's resting membrane potential towards its threshold potential, increases the likelihood of an action potential and normally occurs with the influx of positively charged sodium (Na +) ions into the postsynaptic cell through ion channels activated by neurotransmitter binding.

  8. Synaptic potential - Wikipedia

    en.wikipedia.org/wiki/Synaptic_potential

    Synaptic potential refers to the potential difference across the postsynaptic membrane that results from the action of neurotransmitters at a neuronal synapse. [1] In other words, it is the “incoming” signal that a neuron receives. There are two forms of synaptic potential: excitatory and inhibitory.

  9. Threshold potential - Wikipedia

    en.wikipedia.org/wiki/Threshold_potential

    The basis is that at a certain level of depolarization, when the currents are equal and opposite in an unstable manner, any further entry of positive charge generates an action potential. This specific value of depolarization (in mV) is otherwise known as the threshold potential.