Search results
Results from the WOW.Com Content Network
Single-cell DNA genome sequencing involves isolating a single cell, amplifying the whole genome or region of interest, constructing sequencing libraries, and then applying next-generation DNA sequencing (for example Illumina, Ion Torrent). Single-cell DNA sequencing has been widely applied in mammalian systems to study normal physiology and ...
This single cell shows the process of the central dogma of molecular biology, which are all steps researchers are interested to quantify (DNA, RNA, and Protein).. In cell biology, single-cell analysis and subcellular analysis [1] refer to the study of genomics, transcriptomics, proteomics, metabolomics, and cell–cell interactions at the level of an individual cell, as opposed to more ...
Human Protein Atlas (HPA [10]): a public database with expression profiles of human protein coding genes both on mRNA and protein level in tissues, cells, subcellular compartments, and cancer tumors. Legume Information System (LIS): genomic database for the legume family [11]
The integration of single-cell multi-omic data presents different challenges depending on whether the datasets are matched or unmatched. [48] Matched datasets refer to multiple omic layers that are measured from the same individual cell whereas unmatched data refer to dataset that are measured from a different set of cells.
A branch of the field of multiomics is the analysis of multilevel single-cell data, called single-cell multiomics. [8] [9] This approach gives us an unprecedent resolution to look at multilevel transitions in health and disease at the single cell level. An advantage in relation to bulk analysis is to mitigate confounding factors derived from ...
An example algorithm is the Monocle algorithm [26] that carries out dimensionality reduction of the data, builds a minimal spanning tree using the transformed data, orders cells in pseudo-time by following the longest connected path of the tree and consequently labels cells by type.
Expression data can be used to infer gene regulation: one might compare microarray data from a wide variety of states of an organism to form hypotheses about the genes involved in each state. In a single-cell organism, one might compare stages of the cell cycle, along with various stress conditions (heat shock, starvation, etc.).
Analysis of single-cell sequencing presents many challenges, such as determining the best way to normalize the data. [8] Due to a new level of complications that arise from sequencing of both proteins and transcripts at a single-cell level, the developers of CITE-Seq and their collaborators are maintaining several tools to help with data analysis.