Search results
Results from the WOW.Com Content Network
The three eigenvectors are ordered ,, by their eigenvalues ; [50] then is the primary orientation/dip of clast, is the secondary and is the tertiary, in terms of strength. The clast orientation is defined as the direction of the eigenvector, on a compass rose of 360° .
The eigenvalues are real. The eigenvectors of A −1 are the same as the eigenvectors of A. Eigenvectors are only defined up to a multiplicative constant. That is, if Av = λv then cv is also an eigenvector for any scalar c ≠ 0. In particular, −v and e iθ v (for any θ) are also eigenvectors.
Thus the elements of the spectrum are precisely the eigenvalues of T, and the multiplicity of an eigenvalue λ in the spectrum equals the dimension of the generalized eigenspace of T for λ (also called the algebraic multiplicity of λ). Now, fix a basis B of V over K and suppose M ∈ Mat K (V) is a matrix.
The eigenvalues and eigenvectors are ordered and paired. The jth eigenvalue corresponds to the jth eigenvector. Matrix V denotes the matrix of right eigenvectors (as opposed to left eigenvectors). In general, the matrix of right eigenvectors need not be the (conjugate) transpose of the matrix of left eigenvectors. Rearrange the eigenvectors and ...
Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...
For example, the eigenvectors of a square matrix can be obtained by finding a sequence of vectors x n converging to an eigenvector when n tends to infinity. [ 43 ] To choose the most appropriate algorithm for each specific problem, it is important to determine both the effectiveness and precision of all the available algorithms.
In linear algebra, eigenvalues and eigenvectors play a fundamental role, since, given a linear transformation, an eigenvector is a vector whose direction is not changed by the transformation, and the corresponding eigenvalue is the measure of the resulting change of magnitude of the vector.
The surviving diagonal elements, a i, j, are known as eigenvalues and designated with λ i in the equation, which reduces to =. The resulting equation is known as eigenvalue equation [ 4 ] and used to derive the characteristic polynomial and, further, eigenvalues and eigenvectors .