Search results
Results from the WOW.Com Content Network
The central role of DNA damage and epigenetic defects in DNA repair genes in carcinogenesis. DNA damage is considered to be the primary cause of cancer. [17] More than 60,000 new naturally-occurring instances of DNA damage arise, on average, per human cell, per day, due to endogenous cellular processes (see article DNA damage (naturally occurring)).
Although there are over 50 identifiable hereditary forms of cancer, less than 0.3% of the population are carriers of a cancer-related genetic mutation and these make up less than 3–10% of all cancer cases. [3] The vast majority of cancers are non-hereditary ("sporadic cancers"). Hereditary cancers are primarily caused by an inherited genetic ...
Cancer cells have unique features that make them "immortal" according to some researchers. The enzyme telomerase is used to extend the cancer cell's life span. While the telomeres of most cells shorten after each division, eventually causing the cell to die, telomerase extends the cell's telomeres.
Scientists suggest the findings could one day allow doctors to use a blood test to predict how a patient’s cancer may progress. Genetic clues reveal how cancer might grow and spread – study ...
Because cancer is a class of diseases, [7] [252] it is unlikely that there will ever be a single "cure for cancer" any more than there will be a single treatment for all infectious diseases. [253] Angiogenesis inhibitors were once incorrectly thought to have potential as a "silver bullet" treatment applicable to many types of cancer. [254]
Cancer cells, however, have the ability to grow without these external signals. There are multiple ways in which cancer cells can do this: by producing these signals themselves, known as autocrine signaling ; by permanently activating the signaling pathways that respond to these signals; or by destroying 'off switches' that prevents excessive ...
The researchers found that the bladder cancer cells grew at a “much faster” rate in mice that had fewer Y chromosomes compared to those with many, according to the release.
Cell growth refers to an increase in the total mass of a cell, including both cytoplasmic, nuclear and organelle volume. [1] Cell growth occurs when the overall rate of cellular biosynthesis (production of biomolecules or anabolism) is greater than the overall rate of cellular degradation (the destruction of biomolecules via the proteasome, lysosome or autophagy, or catabolism).