Search results
Results from the WOW.Com Content Network
The primary sign of augmented renal clearance is an increase in the creatinine clearance well above that which would be considered normal. Commonly, ARC is defined as a creatinine clearance of greater than 130 mL/min, but the effects of increased clearance on therapy are not directly correlated to a specific number.
Creatinine clearance exceeds GFR due to creatinine secretion, [4] which can be blocked by cimetidine. Both GFR and C Cr may be accurately calculated by comparative measurements of substances in the blood and urine, or estimated by formulas using just a blood test result ( eGFR and eC Cr ) The results of these tests are used to assess the ...
Therefore, creatinine concentrations in blood and urine may be used to calculate the creatinine clearance (CrCl), which correlates approximately with the glomerular filtration rate (GFR). Blood creatinine concentrations may also be used alone to calculate the estimated GFR (eGFR). The GFR is clinically important as a measurement of kidney function.
The renal clearance ratio or fractional excretion is a relative measure of the speed at which a constituent of urine passes through the kidneys. [ 1 ] [ 2 ] It is defined by following equation: c l e a r a n c e r a t i o o f X = C x C i n {\displaystyle clearance\ ratio\ of\ X={\frac {C_{x}}{C_{in}}}}
The glomerular filtration rate is the flow rate of filtered fluid through the kidney. The creatinine clearance rate (C Cr or CrCl) is the volume of blood plasma that is cleared of creatinine per unit time and is a useful measure for approximating the GFR. Creatinine clearance exceeds GFR due to creatinine secretion, [1] which can be blocked by ...
Usually a creatinine clearance test is performed but other markers, such as the plant polysaccharide inulin or radiolabelled EDTA, may be used as well. filtration fraction = [17] Measures portion of renal plasma that is filtered. anion gap: AG = [Na +] − ([Cl −] + [HCO 3 −])
The Jaffe reaction is a colorimetric method used in clinical chemistry to determine creatinine levels in blood and urine. In 1886, Max Jaffe (1841–1911) wrote about its basic principles in the paper Über den Niederschlag, welchen Pikrinsäure in normalem Harn erzeugt und über eine neue Reaction des Kreatinins in which he described the properties of creatinine and picric acid in an alkaline ...
The interpretation of urinalysis takes into account the results of physical, chemical and microscopic examination and the person's overall condition. Urine test results should always be interpreted using the reference range provided by the laboratory that performed the test, or using information provided by the test strip/device manufacturer. [136]