enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Transposable integer - Wikipedia

    en.wikipedia.org/wiki/Transposable_integer

    For any integer coprime to 10, its reciprocal is a repeating decimal without any non-recurring digits. E.g. 1 ⁄ 143 = 0. 006993 006993 006993.... While the expression of a single series with vinculum on top is adequate, the intention of the above expression is to show that the six cyclic permutations of 006993 can be obtained from this repeating decimal if we select six consecutive digits ...

  3. Round-off error - Wikipedia

    en.wikipedia.org/wiki/Round-off_error

    When using approximation equations or algorithms, especially when using finitely many digits to represent real numbers (which in theory have infinitely many digits), one of the goals of numerical analysis is to estimate computation errors. [5] Computation errors, also called numerical errors, include both truncation errors and roundoff errors.

  4. Kahan summation algorithm - Wikipedia

    en.wikipedia.org/wiki/Kahan_summation_algorithm

    The sum is so large that only the high-order digits of the input numbers are being accumulated. But on the next step, c, an approximation of the running error, counteracts the problem. y = 2.71828 - (-0.0415900) Most digits meet, since c is of a size similar to y. = 2.75987 The shortfall (low-order digits lost) of previous iteration ...

  5. Repeating decimal - Wikipedia

    en.wikipedia.org/wiki/Repeating_decimal

    A repeating decimal or recurring decimal is a decimal representation of a number whose digits are eventually periodic (that is, after some place, the same sequence of digits is repeated forever); if this sequence consists only of zeros (that is if there is only a finite number of nonzero digits), the decimal is said to be terminating, and is not considered as repeating.

  6. Karatsuba algorithm - Wikipedia

    en.wikipedia.org/wiki/Karatsuba_algorithm

    Karatsuba's basic step works for any base B and any m, but the recursive algorithm is most efficient when m is equal to n/2, rounded up. In particular, if n is 2 k, for some integer k, and the recursion stops only when n is 1, then the number of single-digit multiplications is 3 k, which is n c where c = log 2 3.

  7. Casting out nines - Wikipedia

    en.wikipedia.org/wiki/Casting_out_nines

    The method works because the original numbers are 'decimal' (base 10), the modulus is chosen to differ by 1, and casting out is equivalent to taking a digit sum. In general any two 'large' integers, x and y, expressed in any smaller modulus as x' and y' (for example, modulo 7) will always have the same sum, difference or product as their ...

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. printf - Wikipedia

    en.wikipedia.org/wiki/Printf

    This type differs slightly from fixed-point notation in that insignificant zeroes to the right of the decimal point are not included. Also, the decimal point is not included on whole numbers. x, X: unsigned int as a hexadecimal number. x uses lower-case letters and X uses upper-case. o: unsigned int in octal. s: null-terminated string. c: char ...