Search results
Results from the WOW.Com Content Network
In the left hand sides of the following identities, is the L eft most set and is the R ight most set. Whenever necessary, both L and R {\displaystyle L{\text{ and }}R} should be assumed to be subsets of some universe set X , {\displaystyle X,} so that L ∁ := X ∖ L and R ∁ := X ∖ R . {\displaystyle L^{\complement }:=X\setminus L{\text ...
The algebra of sets is the set-theoretic analogue of the algebra of numbers. Just as arithmetic addition and multiplication are associative and commutative, so are set union and intersection; just as the arithmetic relation "less than or equal" is reflexive, antisymmetric and transitive, so is the set relation of "subset".
This article lists mathematical identities, that is, identically true relations holding in mathematics. Bézout's identity (despite its usual name, it is not, properly speaking, an identity) Binet-cauchy identity
This category is for mathematical identities, i.e. identically true relations holding in some area of algebra (including abstract algebra, or formal power series). Subcategories This category has only the following subcategory.
This following list features abbreviated names of mathematical functions, function-like operators and other mathematical terminology. This list is limited to abbreviations of two or more letters (excluding number sets). The capitalization of some of these abbreviations is not standardized – different authors might use different capitalizations.
The power object of a set A is given by its power set, and the exponential object of the sets A and B is given by the set of all functions from A to B. Set is thus a topos (and in particular cartesian closed and exact in the sense of Barr). Set is not abelian, additive nor preadditive. Every non-empty set is an injective object in Set. Every ...
The multiple valued version of log(z) is a set, but it is easier to write it without braces and using it in formulas follows obvious rules. log(z) is the set of complex numbers v which satisfy e v = z; arg(z) is the set of possible values of the arg function applied to z. When k is any integer:
Transcendental functions are functions that are not algebraic. Exponential function: raises a fixed number to a variable power. Hyperbolic functions: formally similar to the trigonometric functions. Inverse hyperbolic functions: inverses of the hyperbolic functions, analogous to the inverse circular functions.