Search results
Results from the WOW.Com Content Network
A given stereocenter has two possible configurations (R and S), which give rise to stereoisomers (diastereomers and enantiomers) in molecules with one or more stereocenter. For a chiral molecule with one or more stereocenter, the enantiomer corresponds to the stereoisomer in which every stereocenter has the opposite configuration.
A molecule having exactly one chiral stereocenter (usually an asymmetric carbon atom) can be labeled (R) or (S), but a molecule having multiple stereocenters needs more than one label. For example, the essential amino acid L -threonine contains two chiral stereocenters and is written (2 S ,3 S )-threonine.
Stereochemistry, a subdiscipline of chemistry, studies the spatial arrangement of atoms that form the structure of molecules and their manipulation. [1] The study of stereochemistry focuses on the relationships between stereoisomers, which are defined as having the same molecular formula and sequence of bonded atoms (constitution) but differing in the geometric positioning of the atoms in space.
Two enantiomers of a generic amino acid at the stereocenter. In stereochemistry, a stereocenter of a molecule is an atom (center), axis or plane that is the focus of stereoisomerism; that is, when having at least three different groups bound to the stereocenter, interchanging any two different groups creates a new stereoisomer.
[4] [5] The configuration of other chiral compounds was then related to that of (+)-glyceraldehyde by sequences of chemical reactions. For example, oxidation of (+)-glyceraldehyde (1) with mercury oxide gives (−)-glyceric acid (2), a reaction that does not alter the stereocenter. Thus the absolute configuration of (−)-glyceric acid must be ...
A chiral molecule is a type of molecule that has a non-superposable mirror image. The feature that is most often the cause of chirality in molecules is the presence of an asymmetric carbon atom. [16] [17] The term "chiral" in general is used to describe the object that is non-superposable on its mirror image. [18]
Since a meso isomer has a superposable mirror image, a compound with a total of n chiral centers cannot attain the theoretical maximum of 2 n stereoisomers if one of the stereoisomers is meso. [4] A meso isomer need not have a mirror plane. It may have an inversion or a rotoreflexion symmetry such as S 4. For example, there are two meso isomers ...
Chiral auxiliaries are incorporated into synthetic routes to control the absolute configuration of stereogenic centers. David A. Evans' synthesis of the macrolide cytovaricin, considered a classic, utilizes oxazolidinone chiral auxiliaries for one asymmetric alkylation reaction and four asymmetric aldol reactions, setting the absolute stereochemistry of nine stereocenters.