Search results
Results from the WOW.Com Content Network
In telecommunications and transmission line theory, the reflection coefficient is the ratio of the complex amplitude of the reflected wave to that of the incident wave. The voltage and current at any point along a transmission line can always be resolved into forward and reflected traveling waves given a specified reference impedance Z 0.
The complex amplitude coefficients for reflection and transmission are usually represented by lower case r and t (whereas the power coefficients are capitalized). As before, we are assuming the magnetic permeability, µ of both media to be equal to the permeability of free space µ 0 as is essentially true of all dielectrics at optical frequencies.
Reflectivity is the square of the magnitude of the Fresnel reflection coefficient, [4] which is the ratio of the reflected to incident electric field; [5] as such the reflection coefficient can be expressed as a complex number as determined by the Fresnel equations for a single layer, whereas the reflectance is always a positive real number.
In the Shuey equation, R(0) is the reflection coefficient at normal incidence and is controlled by the contrast in acoustic impedances. G, often referred to as the AVO gradient, describes the variation of reflection amplitudes at intermediate offsets and the third term, F, describes the behaviour at large angles/far offsets that are close to ...
This equation shows that, for a standing wave, the complex reflection coefficient and impedance repeats every half wavelength along the transmission line. The complex reflection coefficient is generally simply referred to as reflection coefficient.
The overall reflection of a layer structure is the sum of an infinite number of reflections. The transfer-matrix method is based on the fact that, according to Maxwell's equations, there are simple continuity conditions for the electric field across boundaries from one medium to the next.
where is the magnitude of the reflection coefficient. Note that as the reflection coefficient approaches zero, power to the load is maximized. If the reflection coefficient is known, mismatch can be calculated by = ()
Return loss is related to both standing wave ratio (SWR) and reflection coefficient (Γ). Increasing return loss corresponds to lower SWR. Return loss is a measure of how well devices or lines are matched. A match is good if the return loss is high. A high return loss is desirable and results in a lower insertion loss.