enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. 3D rotation group - Wikipedia

    en.wikipedia.org/wiki/3D_rotation_group

    In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition. [ 1 ] By definition, a rotation about the origin is a transformation that preserves the origin, Euclidean distance (so it is an isometry ), and orientation ...

  3. Point groups in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Point_groups_in_three...

    For a bounded object, the proper symmetry group is called its rotation group. It is the intersection of its full symmetry group with SO(3), the full rotation group of the 3D space. The rotation group of a bounded object is equal to its full symmetry group if and only if the object is chiral.

  4. Rotation formalisms in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_formalisms_in...

    The engineering and robotics communities typically use 3-1-3 Euler angles. Notice that after composing the independent rotations, they do not rotate about their axis anymore. The most external matrix rotates the other two, leaving the second rotation matrix over the line of nodes, and the third one in a frame comoving with the body.

  5. Rotational symmetry - Wikipedia

    en.wikipedia.org/wiki/Rotational_symmetry

    Rotational symmetry of order n, also called n-fold rotational symmetry, or discrete rotational symmetry of the n th order, with respect to a particular point (in 2D) or axis (in 3D) means that rotation by an angle of ⁠ ⁠ (180°, 120°, 90°, 72°, 60°, 51 3 ⁄ 7 °, etc.) does not change the object. A "1-fold" symmetry is no symmetry (all ...

  6. Rotation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Rotation_(mathematics)

    The rotation group is a Lie group of rotations about a fixed point. This (common) fixed point or center is called the center of rotation and is usually identified with the origin. The rotation group is a point stabilizer in a broader group of (orientation-preserving) motions. For a particular rotation: The axis of rotation is a line of

  7. Quaternions and spatial rotation - Wikipedia

    en.wikipedia.org/wiki/Quaternions_and_spatial...

    A rotation can be represented by a unit-length quaternion q = (w, r →) with scalar (real) part w and vector (imaginary) part r →. The rotation can be applied to a 3D vector v → via the formula = + (+). This requires only 15 multiplications and 15 additions to evaluate (or 18 multiplications and 12 additions if the factor of 2 is done via ...

  8. Charts on SO (3) - Wikipedia

    en.wikipedia.org/wiki/Charts_on_SO(3)

    In geometry the rotation group is the group of all rotations about the origin of three-dimensional Euclidean space R 3 under the operation of composition. [1] By definition, a rotation about the origin is a linear transformation that preserves length of vectors (it is an isometry) and preserves orientation (i.e. handedness) of space.

  9. Dihedral symmetry in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Dihedral_symmetry_in_three...

    When the 2D plane is embedded horizontally in a 3D space, such a reflection can either be viewed as the restriction to that plane of a reflection through a vertical plane, or as the restriction to the plane of a rotation about the reflection line, by 180°. In 3D, the two operations are distinguished: the group D n contains rotations only, not ...