enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. 3D rotation group - Wikipedia

    en.wikipedia.org/wiki/3D_rotation_group

    In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition. [ 1 ] By definition, a rotation about the origin is a transformation that preserves the origin, Euclidean distance (so it is an isometry ), and orientation ...

  3. Charts on SO (3) - Wikipedia

    en.wikipedia.org/wiki/Charts_on_SO(3)

    In geometry the rotation group is the group of all rotations about the origin of three-dimensional Euclidean space R 3 under the operation of composition. [1] By definition, a rotation about the origin is a linear transformation that preserves length of vectors (it is an isometry) and preserves orientation (i.e. handedness) of space.

  4. Rotation formalisms in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_formalisms_in...

    Rotation formalisms are focused on proper (orientation-preserving) motions of the Euclidean space with one fixed point, that a rotation refers to.Although physical motions with a fixed point are an important case (such as ones described in the center-of-mass frame, or motions of a joint), this approach creates a knowledge about all motions.

  5. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    The two-dimensional case is the only non-trivial (i.e. not one-dimensional) case where the rotation matrices group is commutative, so that it does not matter in which order multiple rotations are performed. An alternative convention uses rotating axes, [1] and the above matrices also represent a rotation of the axes clockwise through an angle θ.

  6. Category:Rotation in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Category:Rotation_in_three...

    This category deals with topics in physics related to the three-dimensional spherical symmetries of physical objects, including topics concerning rotations in classical mechanics, as well as spin and angular momentum in quantum mechanics, and the representations of the Lie groups SU(2) and SO(3).

  7. Finite subgroups of SU(2) - Wikipedia

    en.wikipedia.org/wiki/Finite_subgroups_of_SU(2)

    Let Γ be a finite subgroup of SO(3), the three-dimensional rotation group.There is a natural homomorphism f of SU(2) onto SO(3) which has kernel {±I}. [4] This double cover can be realised using the adjoint action of SU(2) on the Lie algebra of traceless 2-by-2 skew-adjoint matrices or using the action by conjugation of unit quaternions.

  8. AOL

    search.aol.com

    The search engine that helps you find exactly what you're looking for. Find the most relevant information, video, images, and answers from all across the Web.

  9. List of space groups - Wikipedia

    en.wikipedia.org/wiki/List_of_space_groups

    For example, 2 1 is a 180° (twofold) rotation followed by a translation of ⁠ 1 / 2 ⁠ of the lattice vector. 3 1 is a 120° (threefold) rotation followed by a translation of ⁠ 1 / 3 ⁠ of the lattice vector. The possible screw axes are: 2 1, 3 1, 3 2, 4 1, 4 2, 4 3, 6 1, 6 2, 6 3, 6 4, and 6 5.