enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Proper time - Wikipedia

    en.wikipedia.org/wiki/Proper_time

    In relativity, proper time (from Latin, meaning own time) along a timelike world line is defined as the time as measured by a clock following that line. The proper time interval between two events on a world line is the change in proper time, which is independent of coordinates, and is a Lorentz scalar . [ 1 ]

  3. Time in physics - Wikipedia

    en.wikipedia.org/wiki/Time_in_physics

    This equation denotes an uncertainty relation in quantum physics. For example, with time (the observable A), the energy E (from the Hamiltonian H) gives: where is the uncertainty in energy; is the uncertainty in time

  4. List of relativistic equations - Wikipedia

    en.wikipedia.org/wiki/List_of_relativistic_equations

    In this example the time measured in the frame on the vehicle, t, is known as the proper time. The proper time between two events - such as the event of light being emitted on the vehicle and the event of light being received on the vehicle - is the time between the two events in a frame where the events occur at the same location.

  5. Metric tensor (general relativity) - Wikipedia

    en.wikipedia.org/wiki/Metric_tensor_(general...

    The metric captures all the geometric and causal structure of spacetime, being used to define notions such as time, distance, volume, curvature, angle, and separation of the future and the past. In general relativity, the metric tensor plays the role of the gravitational potential in the classical theory of gravitation, although the physical ...

  6. World line - Wikipedia

    en.wikipedia.org/wiki/World_line

    The arclength parameter is called proper time and usually denoted τ. The length of M is called the proper time of the particle. If the worldline M is a line segment, then the particle is said to be in free fall. [1]: 62–63 A world line traces out the path of a single point in spacetime.

  7. Spacetime - Wikipedia

    en.wikipedia.org/wiki/Spacetime

    In physics, spacetime, also called the space-time continuum, is a mathematical model that fuses the three dimensions of space and the one dimension of time into a single four-dimensional continuum. Spacetime diagrams are useful in visualizing and understanding relativistic effects, such as how different observers perceive where and when events ...

  8. Absolute space and time - Wikipedia

    en.wikipedia.org/wiki/Absolute_space_and_time

    Absolute, true and mathematical time, of itself, and from its own nature flows equably without regard to anything external, and by another name is called duration: relative, apparent and common time, is some sensible and external (whether accurate or unequable) measure of duration by the means of motion, which is commonly used instead of true ...

  9. Lorentz factor - Wikipedia

    en.wikipedia.org/wiki/Lorentz_factor

    The Lorentz factor or Lorentz term (also known as the gamma factor [1]) is a dimensionless quantity expressing how much the measurements of time, length, and other physical properties change for an object while it moves. The expression appears in several equations in special relativity, and it arises in derivations of the Lorentz transformations.