Search results
Results from the WOW.Com Content Network
The multiplication factor, k, is defined as (see nuclear chain reaction): k = number of neutrons in one generation / number of neutrons in preceding generation . If k is greater than 1, the chain reaction is supercritical, and the neutron population will grow exponentially.
A plot illustrating the dependence on temperature of the rates of chemical reactions and various biological processes, for several different Q 10 temperature coefficients. . The rate ratio at a temperature increase of 10 degrees (marked by points) is equal to the Q 10 coefficie
The four-factor formula, also known as Fermi's four factor formula is used in nuclear engineering to determine the multiplication of a nuclear chain reaction in an infinite medium. Four-factor formula: k ∞ = η f p ε {\displaystyle k_{\infty }=\eta fp\varepsilon } [ 1 ]
A growth factor is a naturally occurring substance capable of stimulating cell proliferation, wound healing, and occasionally cellular differentiation. [1] Usually it is a secreted protein or a steroid hormone .
A chemical formula is a way of presenting information about the chemical proportions of atoms that constitute a particular chemical compound or molecule, using chemical element symbols, numbers, and sometimes also other symbols, such as parentheses, dashes, brackets, commas and plus (+) and minus (−) signs.
Conversion and its related terms yield and selectivity are important terms in chemical reaction engineering.They are described as ratios of how much of a reactant has reacted (X — conversion, normally between zero and one), how much of a desired product was formed (Y — yield, normally also between zero and one) and how much desired product was formed in ratio to the undesired product(s) (S ...
Epidermal growth factor (EGF) is a protein that stimulates cell growth and differentiation by binding to its receptor, EGFR. Human EGF is 6-k Da [ 5 ] and has 53 amino acid residues and three intramolecular disulfide bonds .
Fugacity and BCF relate to each other in the following equation: = [6] where Z Fish is equal to the Fugacity capacity of a chemical in the fish, P Fish is equal to the density of the fish (mass/length 3), BCF is the partition coefficient between the fish and the water (length 3 /mass) and H is equal to the Henry's law constant (Length 2 /Time 2) [6]