Search results
Results from the WOW.Com Content Network
Overview of the citric acid cycle. The citric acid cycle—also known as the Krebs cycle, Szent–Györgyi–Krebs cycle, or TCA cycle (tricarboxylic acid cycle) [1] [2] —is a series of biochemical reactions to release the energy stored in nutrients through the oxidation of acetyl-CoA derived from carbohydrates, fats, proteins, and alcohol.
CO 2 is excreted from the cell via diffusion into the blood stream, where it is transported in three ways: Up to 7% is dissolved in its molecular form in blood plasma. About 70-80% is converted into hydrocarbonate ions, The remainder binds with haemoglobin in red blood cells, is carried to the lungs, and exhaled. [11]
k H CO 2 is a constant including the solubility of carbon dioxide in blood. k H CO 2 is approximately 0.03 (mmol/L)/mmHg; p CO 2 is the partial pressure of carbon dioxide in the blood; Combining these equations results in the following equation relating the pH of blood to the concentration of bicarbonate and the partial pressure of carbon ...
From the complete oxidation of one glucose molecule to carbon dioxide and oxidation of all the reduced coenzymes. Although there is a theoretical yield of 38 ATP molecules per glucose during cellular respiration, such conditions are generally not realized because of losses such as the cost of moving pyruvate (from glycolysis), phosphate, and ...
Glucose reacts with oxygen in the following reaction, C 6 H 12 O 6 + 6O 2 → 6CO 2 + 6H 2 O. Carbon dioxide and water are waste products, and the overall reaction is exothermic. The reaction of glucose with oxygen releasing energy in the form of molecules of ATP is therefore one of the most important biochemical pathways found in living organisms.
The carbon dioxide molecules form a carbamate with the four terminal-amine groups of the four protein chains in the deoxy form of the molecule. Thus, one hemoglobin molecule can transport four carbon dioxide molecules back to the lungs, where they are released when the molecule changes back to the oxyhemoglobin form.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
This acetate, bound to the active thiol group of coenzyme A, enters the citric acid cycle (TCA cycle) where it is fully oxidized to carbon dioxide. This pathway thus allows cells to obtain energy from fat. To use acetate from fat for biosynthesis of carbohydrates, the glyoxylate cycle, whose initial reactions are identical to the TCA cycle, is ...