enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Markov chain - Wikipedia

    en.wikipedia.org/wiki/Markov_chain

    Markov chains are used in finance and economics to model a variety of different phenomena, including the distribution of income, the size distribution of firms, asset prices and market crashes. D. G. Champernowne built a Markov chain model of the distribution of income in 1953. [86]

  3. Markov Chains and Mixing Times - Wikipedia

    en.wikipedia.org/wiki/Markov_Chains_and_Mixing_Times

    A Markov chain is a stochastic process defined by a set of states and, for each state, a probability distribution on the states. Starting from an initial state, it follows a sequence of states where each state in the sequence is chosen randomly from the distribution associated with the previous state.

  4. Continuous-time Markov chain - Wikipedia

    en.wikipedia.org/wiki/Continuous-time_Markov_chain

    We say is Markov with initial distribution and rate matrix to mean: the trajectories of are almost surely right continuous, let be a modification of to have (everywhere) right-continuous trajectories, (()) = + almost surely (note to experts: this condition says is non-explosive), the state sequence (()) is a discrete-time Markov chain with ...

  5. Markov model - Wikipedia

    en.wikipedia.org/wiki/Markov_model

    In this context, the Markov property indicates that the distribution for this variable depends only on the distribution of a previous state. An example use of a Markov chain is Markov chain Monte Carlo, which uses the Markov property to prove that a particular method for performing a random walk will sample from the joint distribution.

  6. Stochastic matrix - Wikipedia

    en.wikipedia.org/wiki/Stochastic_matrix

    Intuitively, a stochastic matrix represents a Markov chain; the application of the stochastic matrix to a probability distribution redistributes the probability mass of the original distribution while preserving its total mass. If this process is applied repeatedly, the distribution converges to a stationary distribution for the Markov chain.

  7. M/G/1 queue - Wikipedia

    en.wikipedia.org/wiki/M/G/1_queue

    Markov chains with generator matrices or block matrices of this form are called M/G/1 type Markov chains, [13] a term coined by Marcel F. Neuts. [ 14 ] [ 15 ] An M/G/1 queue has a stationary distribution if and only if the traffic intensity ρ = λ E ( G ) {\displaystyle \rho =\lambda \mathbb {E} (G)} is less than 1, in which case the unique ...

  8. Markovian arrival process - Wikipedia

    en.wikipedia.org/wiki/Markovian_arrival_process

    A Markov arrival process is defined by two matrices, D 0 and D 1 where elements of D 0 represent hidden transitions and elements of D 1 observable transitions. The block matrix Q below is a transition rate matrix for a continuous-time Markov chain.

  9. Balance equation - Wikipedia

    en.wikipedia.org/wiki/Balance_equation

    For a continuous time Markov chain (CTMC) with transition rate matrix, if can be found such that for every pair of states and = holds, then by summing over , the global balance equations are satisfied and is the stationary distribution of the process. [5]