Search results
Results from the WOW.Com Content Network
Any non-linear differentiable function, (,), of two variables, and , can be expanded as + +. If we take the variance on both sides and use the formula [11] for the variance of a linear combination of variables (+) = + + (,), then we obtain | | + | | +, where is the standard deviation of the function , is the standard deviation of , is the standard deviation of and = is the ...
In metrology, measurement uncertainty is the expression of the statistical dispersion of the values attributed to a quantity measured on an interval or ratio scale.. All measurements are subject to uncertainty and a measurement result is complete only when it is accompanied by a statement of the associated uncertainty, such as the standard deviation.
Uncertainty quantification (UQ) is the science of quantitative characterization and estimation of uncertainties in both computational and real world applications. It tries to determine how likely certain outcomes are if some aspects of the system are not exactly known.
Experimental uncertainty analysis is a technique that analyses a derived quantity, based on the uncertainties in the experimentally measured quantities that are used in some form of mathematical relationship ("model") to calculate that derived quantity.
Canonical commutation rule for position q and momentum p variables of a particle, 1927.pq − qp = h/(2πi).Uncertainty principle of Heisenberg, 1927. The uncertainty principle, also known as Heisenberg's indeterminacy principle, is a fundamental concept in quantum mechanics.
If there is a need to write the implied uncertainty of a number, then it can be written as with stating it as the implied uncertainty (to prevent readers from recognizing it as the measurement uncertainty), where x and σ x are the number with an extra zero digit (to follow the rules to write uncertainty above) and the implied uncertainty of it ...
Uncertainty or incertitude refers to situations involving imperfect or unknown information. It applies to predictions of future events, to physical measurements that are already made, or to the unknown. Uncertainty arises in partially observable or stochastic environments, as well as due to ignorance, indolence, or both. [1]
Figure 1. Schematic representation of uncertainty analysis and sensitivity analysis. In mathematical modeling, uncertainty arises from a variety of sources - errors in input data, parameter estimation and approximation procedure, underlying hypothesis, choice of model, alternative model structures and so on.