enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Markov property - Wikipedia

    en.wikipedia.org/wiki/Markov_property

    A process with this property is said to be Markov or Markovian and known as a Markov process. Two famous classes of Markov process are the Markov chain and Brownian motion. Note that there is a subtle, often overlooked and very important point that is often missed in the plain English statement of the definition. Namely that the statespace of ...

  3. Markov decision process - Wikipedia

    en.wikipedia.org/wiki/Markov_decision_process

    The "Markov" in "Markov decision process" refers to the underlying structure of state transitions that still follow the Markov property. The process is called a "decision process" because it involves making decisions that influence these state transitions, extending the concept of a Markov chain into the realm of decision-making under uncertainty.

  4. Daniel W. Stroock - Wikipedia

    en.wikipedia.org/wiki/Daniel_W._Stroock

    Daniel Wyler Stroock (born March 20, 1940) is an American mathematician, a probabilist.He is regarded and revered as one of the fundamental contributors to Malliavin calculus with Shigeo Kusuoka and the theory of diffusion processes with S. R. Srinivasa Varadhan with an orientation towards the refinement and further development of Itô’s stochastic calculus.

  5. Kelly's lemma - Wikipedia

    en.wikipedia.org/wiki/Kelly's_lemma

    In probability theory, Kelly's lemma states that for a stationary continuous-time Markov chain, a process defined as the time-reversed process has the same stationary distribution as the forward-time process. [1] The theorem is named after Frank Kelly. [2] [3] [4] [5]

  6. Markov model - Wikipedia

    en.wikipedia.org/wiki/Markov_model

    A Markov decision process is a Markov chain in which state transitions depend on the current state and an action vector that is applied to the system. Typically, a Markov decision process is used to compute a policy of actions that will maximize some utility with respect to expected rewards.

  7. Renewal theory - Wikipedia

    en.wikipedia.org/wiki/Renewal_theory

    The renewal process is a generalization of the Poisson process.In essence, the Poisson process is a continuous-time Markov process on the positive integers (usually starting at zero) which has independent exponentially distributed holding times at each integer before advancing to the next integer, +.

  8. Markov chain - Wikipedia

    en.wikipedia.org/wiki/Markov_chain

    Usually the term "Markov chain" is reserved for a process with a discrete set of times, that is, a discrete-time Markov chain (DTMC), [11] but a few authors use the term "Markov process" to refer to a continuous-time Markov chain (CTMC) without explicit mention.

  9. Gauss–Markov process - Wikipedia

    en.wikipedia.org/wiki/Gauss–Markov_process

    Gauss–Markov stochastic processes (named after Carl Friedrich Gauss and Andrey Markov) are stochastic processes that satisfy the requirements for both Gaussian processes and Markov processes. [1] [2] A stationary Gauss–Markov process is unique [citation needed] up to rescaling; such a process is also known as an Ornstein–Uhlenbeck process.