enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Silhouette (clustering) - Wikipedia

    en.wikipedia.org/wiki/Silhouette_(clustering)

    A clustering with an average silhouette width of over 0.7 is considered to be "strong", a value over 0.5 "reasonable" and over 0.25 "weak", but with increasing dimensionality of the data, it becomes difficult to achieve such high values because of the curse of dimensionality, as the distances become more similar. [2]

  3. Determining the number of clusters in a data set - Wikipedia

    en.wikipedia.org/wiki/Determining_the_number_of...

    The average silhouette of the data is another useful criterion for assessing the natural number of clusters. The silhouette of a data instance is a measure of how closely it is matched to data within its cluster and how loosely it is matched to data of the neighboring cluster, i.e., the cluster whose average distance from the datum is lowest. [8]

  4. Dunn index - Wikipedia

    en.wikipedia.org/wiki/Dunn_index

    The Dunn index (DI) (introduced by J. C. Dunn in 1974) is a metric for evaluating clustering algorithms. [1] [2] This is part of a group of validity indices including the Davies–Bouldin index or Silhouette index, in that it is an internal evaluation scheme, where the result is based on the clustered data itself.

  5. Cluster analysis - Wikipedia

    en.wikipedia.org/wiki/Cluster_analysis

    Educational data mining Cluster analysis is for example used to identify groups of schools or students with similar properties. Typologies From poll data, projects such as those undertaken by the Pew Research Center use cluster analysis to discern typologies of opinions, habits, and demographics that may be useful in politics and marketing.

  6. k-medoids - Wikipedia

    en.wikipedia.org/wiki/K-medoids

    The "goodness" of the given value of k can be assessed with methods such as the silhouette method. The medoid of a cluster is defined as the object in the cluster whose sum (and, equivalently, the average) of dissimilarities to all the objects in the cluster is minimal, that is, it is a most centrally located point in the cluster.

  7. Governors Ball's Gender Breakdown Of Performers

    data.huffingtonpost.com/music-festivals/...

    Just 17 percent of acts at Governors Ball are women. Here’s why.

  8. David R. Goode - Pay Pals - The Huffington Post

    data.huffingtonpost.com/paypals/david-r-goode

    From January 2008 to December 2012, if you bought shares in companies when David R. Goode joined the board, and sold them when he left, you would have a 30.7 percent return on your investment, compared to a -2.8 percent return from the S&P 500.

  9. k-means clustering - Wikipedia

    en.wikipedia.org/wiki/K-means_clustering

    Cluster analysis, a fundamental task in data mining and machine learning, involves grouping a set of data points into clusters based on their similarity. k -means clustering is a popular algorithm used for partitioning data into k clusters, where each cluster is represented by its centroid.