Search results
Results from the WOW.Com Content Network
He was the first to use the German word eigen, which means "own", [6] to denote eigenvalues and eigenvectors in 1904, [c] though he may have been following a related usage by Hermann von Helmholtz. For some time, the standard term in English was "proper value", but the more distinctive term "eigenvalue" is the standard today. [17]
A conjugate eigenvector or coneigenvector is a vector sent after transformation to a scalar multiple of its conjugate, where the scalar is called the conjugate eigenvalue or coneigenvalue of the linear transformation. The coneigenvectors and coneigenvalues represent essentially the same information and meaning as the regular eigenvectors and ...
Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...
Top: The action of M, indicated by its effect on the unit disc D and the two canonical unit vectors e 1 and e 2. Left: The action of V ⁎, a rotation, on D, e 1, and e 2. Bottom: The action of Σ, a scaling by the singular values σ 1 horizontally and σ 2 vertically.
In case of a symmetric matrix we have of =, hence the singular values of are the absolute values of the eigenvalues of 2-norm and spectral radius The 2-norm of a matrix A is the norm based on the Euclidean vectornorm; that is, the largest value ‖ A x ‖ 2 {\displaystyle \|Ax\|_{2}} when x runs through all vectors with ‖ x ‖ 2 = 1 ...
For example, if has real-valued elements, then it may be necessary for the eigenvalues and the components of the eigenvectors to have complex values. [ 35 ] [ 36 ] [ 37 ] The set spanned by all generalized eigenvectors for a given λ {\displaystyle \lambda } forms the generalized eigenspace for λ {\displaystyle \lambda } .
Each value of λ corresponds to one or more eigenfunctions. If multiple linearly independent eigenfunctions have the same eigenvalue, the eigenvalue is said to be degenerate and the maximum number of linearly independent eigenfunctions associated with the same eigenvalue is the eigenvalue's degree of degeneracy or geometric multiplicity. [4] [5]
Note that there are 2n + 1 of these values, but only the first n + 1 are unique. The (n + 1)th value gives us the zero vector as an eigenvector with eigenvalue 0, which is trivial. This can be seen by returning to the original recurrence. So we consider only the first n of these values to be the n eigenvalues of the Dirichlet - Neumann problem.