Search results
Results from the WOW.Com Content Network
Surface roughness, often shortened to roughness, is a component of surface finish (surface texture). It is quantified by the deviations in the direction of the normal vector of a real surface from its ideal form. If these deviations are large, the surface is rough; if they are small, the surface is smooth.
Rugosity calculations are commonly used in materials science to characterize surfaces, amongst others, in marine science to characterize seafloor habitats. A common technique to measure seafloor rugosity is Risk's chain-and-tape method [2] but with the advent of underwater photography less invasive quantitative methods have been developed.
The intrinsic permeability is the attribute primarily influenced by the pore structure, and the fundamental physical factors governing fluid flow and distribution are the grain surface-to-volume ratio and grain shape. [6] The idea that the pore space is made up of a network of channels through which fluid can flow is particularly helpful. Pore ...
In Wenzel state, adding surface roughness will enhance the wettability caused by the chemistry of the surface. The Wenzel correlation can be written as = where θ m is the measured contact angle, θ Y is the Young contact angle and r is the roughness ratio. The roughness ratio is defined as the ratio between the actual and projected ...
This has been used for a number of applications including the study of materials for acoustic isolation, and for oil prospection using acoustics means. In analytical chemistry applied to polymers and sometimes small molecules tortuosity is applied in gel permeation chromatography (GPC) also known
In materials science, asperity, defined as "unevenness of surface, roughness, ruggedness" (from the Latin asper—"rough" [1]), has implications (for example) in physics and seismology. Smooth surfaces, even those polished to a mirror finish, are not truly smooth on a microscopic scale.
The exchange current density depends critically on the nature of the electrode, not only its structure, but also physical parameters such as surface roughness. Of course, factors that change the composition of the electrode, including passivating oxides and adsorbed species on the surface, also influence the electron transfer. The nature of the ...
In engineering, the Moody chart or Moody diagram (also Stanton diagram) is a graph in non-dimensional form that relates the Darcy–Weisbach friction factor f D, Reynolds number Re, and surface roughness for fully developed flow in a circular pipe. It can be used to predict pressure drop or flow rate down such a pipe.