Search results
Results from the WOW.Com Content Network
the sinc-function becomes a continuous function on all real numbers. The term removable singularity is used in such cases when (re)defining values of a function to coincide with the appropriate limits make a function continuous at specific points. A more involved construction of continuous functions is the function composition.
In calculus and real analysis, absolute continuity is a smoothness property of functions that is stronger than continuity and uniform continuity. The notion of absolute continuity allows one to obtain generalizations of the relationship between the two central operations of calculus — differentiation and integration .
In electronics, a continuity test is the checking of an electric circuit to see if current flows (that it is in fact a complete circuit). A continuity test is performed by placing a small voltage (wired in series with an LED or noise-producing component such as a piezoelectric speaker ) across the chosen path.
The function f is continuous at p if and only if the limit of f(x) as x approaches p exists and is equal to f(p). If f : M → N is a function between metric spaces M and N, then it is equivalent that f transforms every sequence in M which converges towards p into a sequence in N which converges towards f(p).
A sublinear modulus of continuity can easily be found for any uniformly continuous function which is a bounded perturbation of a Lipschitz function: if f is a uniformly continuous function with modulus of continuity ω, and g is a k Lipschitz function with uniform distance r from f, then f admits the sublinear module of continuity min{ω(t), 2r ...
Oscillation can be used to define continuity of a function, and is easily equivalent to the usual ε-δ definition (in the case of functions defined everywhere on the real line): a function ƒ is continuous at a point x 0 if and only if the oscillation is zero; [1] in symbols, () =
For a Lipschitz continuous function, there exists a double cone (white) whose origin can be moved along the graph so that the whole graph always stays outside the double cone. In mathematical analysis, Lipschitz continuity, named after German mathematician Rudolf Lipschitz, is a strong form of uniform continuity for functions.
A set-valued function that is both upper and lower hemicontinuous is said to be continuous in an analogy to the property of the same name for single-valued functions. To explain both notions, consider a sequence a of points in a domain, and a sequence b of points in the range.