Search results
Results from the WOW.Com Content Network
This is due to the effect of overheads which are used to format the data in an agreed manner so that both ends of a connection have a consistent view of the data. There are at least two issues that aren't immediately obvious for transmitting compressed files: The throughput of the network itself isn't improved by compression.
To give a practical example, two nodes communicating over a geostationary satellite link with a round-trip delay time (or round-trip time, RTT) of 0.5 seconds and a bandwidth of 10 Gbit/s can have up to 0.5×10 Gbits, i.e., 5 Gbit of unacknowledged data in flight. Despite having much lower latencies than satellite links, even terrestrial fiber ...
If the sent data packet as well as the response packet have the same length, the roundtrip time can be expressed as: Roundtrip time = 2 × Packet delivery time + processing delay. In case of only one physical link, the above expression corresponds to: Link roundtrip time = 2 × packet transmission time + 2 × propagation delay + processing delay
In a network simulation model with infinite packet queues, the asymptotic throughput occurs when the latency (the packet queuing time) goes to infinity, while if the packet queues are limited, or the network is a multi-drop network with many sources, and collisions may occur, the packet-dropping rate approaches 100%.
The speed of light imposes a minimum propagation time on all electromagnetic signals. It is not possible to reduce the latency below = / where s is the distance and c m is the speed of light in the medium (roughly 200,000 km/s for most fiber or electrical media, depending on their velocity factor).
A data packet consists of the PID followed by 0–1,024 bytes of data payload (up to 1,024 bytes for high-speed devices, up to 64 bytes for full-speed devices, and at most eight bytes for low-speed devices), [12] and a 16-bit CRC. There are two basic forms of data packet, DATA0 and DATA1. A data packet must always be preceded by an address ...
Limiting the speed of data sent by a data originator (a client computer or a server computer) is much more efficient than limiting the speed in an intermediate network device between client and server because while in the first case usually no network packets are lost, in the second case network packets can be lost / discarded whenever ingoing data speed overcomes the bandwidth limit or the ...
High Speed Downlink Packet Access (HSDPA) is an enhanced 3G (third-generation) mobile communications protocol in the High-Speed Packet Access (HSPA) family. HSDPA is also known as 3.5G and 3G+ . It allows networks based on the Universal Mobile Telecommunications System (UMTS) to have higher data speeds and capacity.