Search results
Results from the WOW.Com Content Network
An algorithm is said to be exponential time, if T(n) is upper bounded by 2 poly(n), where poly(n) is some polynomial in n. More formally, an algorithm is exponential time if T(n) is bounded by O(2 n k) for some constant k. Problems which admit exponential time algorithms on a deterministic Turing machine form the complexity class known as EXP.
In computational complexity theory, the complexity class EXPTIME (sometimes called EXP or DEXPTIME) is the set of all decision problems that are solvable by a deterministic Turing machine in exponential time, i.e., in O(2 p(n)) time, where p(n) is a polynomial function of n.
In computational complexity theory, the complexity class 2-EXPTIME (sometimes called 2-EXP) is the set of all decision problems solvable by a deterministic Turing machine in O(2 2 p(n)) time, where p(n) is a polynomial function of n.
In probably approximately correct (PAC) learning, one is concerned with whether the sample complexity is polynomial, that is, whether (,,) is bounded by a polynomial in / and /. If N ( ρ , ϵ , δ ) {\displaystyle N(\rho ,\epsilon ,\delta )} is polynomial for some learning algorithm, then one says that the hypothesis space H {\displaystyle ...
For example, the amount of time it takes to solve problems in the complexity class P grows at a polynomial rate as the input size increases, which is comparatively slow compared to problems in the exponential complexity class EXPTIME (or more accurately, for problems in EXPTIME that are outside of P, since ).
An early example of algorithm complexity analysis is the running time analysis of the Euclidean algorithm done by Gabriel Lamé in 1844. Before the actual research explicitly devoted to the complexity of algorithmic problems started off, numerous foundations were laid out by various researchers.
Therefore, the time complexity, generally called bit complexity in this context, may be much larger than the arithmetic complexity. For example, the arithmetic complexity of the computation of the determinant of a n×n integer matrix is () for the usual algorithms (Gaussian elimination).
Recurrent neural networks (RNNs) are a class of artificial neural network commonly used for sequential data processing. Unlike feedforward neural networks, which process data in a single pass, RNNs process data across multiple time steps, making them well-adapted for modelling and processing text, speech, and time series.