enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Time complexity - Wikipedia

    en.wikipedia.org/wiki/Time_complexity

    An algorithm is said to be exponential time, if T(n) is upper bounded by 2 poly(n), where poly(n) is some polynomial in n. More formally, an algorithm is exponential time if T(n) is bounded by O(2 n k) for some constant k. Problems which admit exponential time algorithms on a deterministic Turing machine form the complexity class known as EXP.

  3. EXPTIME - Wikipedia

    en.wikipedia.org/wiki/EXPTIME

    In computational complexity theory, the complexity class EXPTIME (sometimes called EXP or DEXPTIME) is the set of all decision problems that are solvable by a deterministic Turing machine in exponential time, i.e., in O(2 p(n)) time, where p(n) is a polynomial function of n.

  4. 2-EXPTIME - Wikipedia

    en.wikipedia.org/wiki/2-EXPTIME

    In computational complexity theory, the complexity class 2-EXPTIME (sometimes called 2-EXP) is the set of all decision problems solvable by a deterministic Turing machine in O(2 2 p(n)) time, where p(n) is a polynomial function of n.

  5. Sample complexity - Wikipedia

    en.wikipedia.org/wiki/Sample_complexity

    In probably approximately correct (PAC) learning, one is concerned with whether the sample complexity is polynomial, that is, whether (,,) is bounded by a polynomial in / and /. If N ( ρ , ϵ , δ ) {\displaystyle N(\rho ,\epsilon ,\delta )} is polynomial for some learning algorithm, then one says that the hypothesis space H {\displaystyle ...

  6. Complexity class - Wikipedia

    en.wikipedia.org/wiki/Complexity_class

    For example, the amount of time it takes to solve problems in the complexity class P grows at a polynomial rate as the input size increases, which is comparatively slow compared to problems in the exponential complexity class EXPTIME (or more accurately, for problems in EXPTIME that are outside of P, since ).

  7. Computational complexity theory - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    An early example of algorithm complexity analysis is the running time analysis of the Euclidean algorithm done by Gabriel Lamé in 1844. Before the actual research explicitly devoted to the complexity of algorithmic problems started off, numerous foundations were laid out by various researchers.

  8. Computational complexity - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity

    Therefore, the time complexity, generally called bit complexity in this context, may be much larger than the arithmetic complexity. For example, the arithmetic complexity of the computation of the determinant of a n×n integer matrix is () for the usual algorithms (Gaussian elimination).

  9. Recurrent neural network - Wikipedia

    en.wikipedia.org/wiki/Recurrent_neural_network

    Recurrent neural networks (RNNs) are a class of artificial neural network commonly used for sequential data processing. Unlike feedforward neural networks, which process data in a single pass, RNNs process data across multiple time steps, making them well-adapted for modelling and processing text, speech, and time series.