Search results
Results from the WOW.Com Content Network
An algorithm is said to be exponential time, if T(n) is upper bounded by 2 poly(n), where poly(n) is some polynomial in n. More formally, an algorithm is exponential time if T(n) is bounded by O(2 n k) for some constant k. Problems which admit exponential time algorithms on a deterministic Turing machine form the complexity class known as EXP.
It requires Θ(n log n) time, where n is the number of items to be packed. The algorithm can be made much more effective by first sorting the list of items into decreasing order (sometimes known as the first-fit decreasing algorithm), although this still does not guarantee an optimal solution and for longer lists may increase the running time ...
The sort has a known time complexity of O(n 2), and after the subroutine runs the algorithm must take an additional 55n 3 + 2n + 10 steps before it terminates. Thus the overall time complexity of the algorithm can be expressed as T(n) = 55n 3 + O(n 2). Here the terms 2n + 10 are subsumed within the faster-growing O(n 2). Again, this usage ...
Here, complexity refers to the time complexity of performing computations on a multitape Turing machine. [1] See big O notation for an explanation of the notation used. Note: Due to the variety of multiplication algorithms, M ( n ) {\displaystyle M(n)} below stands in for the complexity of the chosen multiplication algorithm.
EXPTIME is one intuitive class in an exponential hierarchy of complexity classes with increasingly more complex oracles or quantifier alternations. For example, the class 2-EXPTIME is defined similarly to EXPTIME but with a doubly exponential time bound. This can be generalized to higher and higher time bounds.
As both n and L grow large, SSP is NP-hard. The complexity of the best known algorithms is exponential in the smaller of the two parameters n and L. The problem is NP-hard even when all input integers are positive (and the target-sum T is a part of the input). This can be proved by a direct reduction from 3SAT. [2]
Therefore, the time complexity, generally called bit complexity in this context, may be much larger than the arithmetic complexity. For example, the arithmetic complexity of the computation of the determinant of a n×n integer matrix is () for the usual algorithms (Gaussian elimination).
The problem is set in the model of decision tree complexity or query complexity and was conceived by Daniel R. Simon in 1994. [2] Simon exhibited a quantum algorithm that solves Simon's problem exponentially faster with exponentially fewer queries than the best probabilistic (or deterministic) classical algorithm. In particular, Simon's ...