Search results
Results from the WOW.Com Content Network
A body is said to be "free" when it is singled out from other bodies for the purposes of dynamic or static analysis. The object does not have to be "free" in the sense of being unforced, and it may or may not be in a state of equilibrium; rather, it is not fixed in place and is thus "free" to move in response to forces and torques it may experience.
A form of Newton's second law, that force is the rate of change of momentum, also holds, as does the conservation of momentum. However, the definition of momentum is modified. Among the consequences of this is the fact that the more quickly a body moves, the harder it is to accelerate, and so, no matter how much force is applied, a body cannot ...
The relationship, described by Schwedler's theorem, between distributed load and shear force magnitude is: [3] d Q d x = − q {\displaystyle {\frac {dQ}{dx}}=-q} Some direct results of this is that a shear diagram will have a point change in magnitude if a point load is applied to a member, and a linearly varying shear magnitude as a result of ...
The force and torque vectors that arise in applying Newton's laws to a rigid body can be assembled into a screw called a wrench. A force has a point of application and a line of action, therefore it defines the Plücker coordinates of a line in space and has zero pitch. A torque, on the other hand, is a pure moment that is not bound to a line ...
With respect to a coordinate frame whose origin coincides with the body's center of mass for τ() and an inertial frame of reference for F(), they can be expressed in matrix form as:
In Newtonian mechanics, momentum (pl.: momenta or momentums; more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The moment of force, or torque, is a first moment: =, or, more generally, .; Similarly, angular momentum is the 1st moment of momentum: =.Momentum itself is not a moment.; The electric dipole moment is also a 1st moment: = for two opposite point charges or () for a distributed charge with charge density ().